4 Field Precision LLC

PO Box 13595, Albuquerque, NM 87192 U.S.A.
Telephone: +1-505-220-3875
EMail: techinfo@fieldp.com URL: http://www.fieldp.com

Read this first

With the impressive graphics and computational power of modern computer codes, we tend to forget that they don't always give the right answer. Sources of error may include invalid input parameters, misinterpretation of results and program bugs. Computer "simulations" should not be considered the absolute arbiter in technical applications. Cross checks and careful analysis are essential. This is particularly important in radiation transport calculations that could affect personnel safety.

- GamBet can be a useful aid in the design of radiation shielding, but the simulations alone are insufficient. The results must be combined with analytic estimates, practical guidelines and careful monitoring to ensure safety.
- Although GamBet is well suited to research investigations of new approaches to radiation therapy, the code was not designed for planning radiation treatments in a clinical setting.
GamBet is not certified or recommended for use in clinical radiation therapy.
Although we make all possible efforts to improve and to correct GamBet, it is impossible to guarantee that a code of its complexity is absolutely free of error. The user is responsible for checking the validity and inputs and results. Field Precision assumes no liability for applications of GamBet beyond a refund of the purchase price.

Contents

1 Introduction 5
2 GBLaunch 8
2.1 Setting the program and data directories 8
2.2 Creating and running tasks 8
2.3 Tools 10
3 Simulation modes 12
4 Structure of the GamBet control script 14
5 Using the setup dialog to create a script 16
6 Geometry commands 22
6.1 Loading the geometry file 23
6.2 Loading and modifying electric field information 23
6.3 Loading and modifying magnetic field information 24
7 Composition commands 26
8 Source commands 29
8.1 Particle input from source files 30
8.2 Particle input from Trak and OmniTrak 31
8.3 Number of showers and source properties 32
9 Process commands 34
9.1 Penelope control 34
9.2 Variance reduction control 36
9.3 Simulation control 37
10 Running GamBet: interactive and background modes 41
11 GamBet: parallel operation 44
12 Input/output files 48
13 Contents of the listing file 51
13.1 Source information 51
13.2 Penelope setup information 51
13.3 Primary particle statistics 52
13.4 Energy conservation 53
13.5 Dose assignment statistics 53
13.6 Particle flux statistics 54
14 GBView2 55
14.1 File menu 55
14.2 Spatial plots menu 56
14.3 Dose analysis menu 59
14.4 Scan plot menu 61
15 GBView3 63
15.1 File menu 63
15.2 Dose analysis menu 64
15.3 Plane plots 66
15.4 Slice plots 68
15.5 Analysis in a slice 70
15.6 Surface plots 71
15.7 Saving and loading views 72
16 GBView2 and GBView3 script operation 74
17 Penelope predefined materials 76
17.1 Elements 76
17.2 Compounds and mixtures 77
18 Penelope data files 82

1 Introduction

GamBet (gamma and beta particles) is a comprehensive software suite to simulate the transport of energetic electrons, photons and positrons through matter over the energy range from 50 eV to 1 GeV . The program tracks the history of primary and secondary particles produced by material interactions by the Monte Carlo method. GamBet is an essential tool for applications such as X-ray imaging, radiation detectors, electron-beam generation of bremsstrahlung radiation and research on radiation medical treatments. GamBet may be employed as an extension to the Trak and OmniTrak charged-particle codes or as a stand-alone Monte Carlo simulator. The program produces files of power deposition that may be ported to TDiff or HeatWave for thermal analyses of radiation effects.

The program gambet.exe combines Field Precision technology developed for finite-element codes with the Penelope radiation-physics package ${ }^{1}$ The Penelope routines perform the Monte Carlo tasks in GamBet: generation of atomic cross sections, prediction of single-particle interactions with matter and the creation of secondary particles. The Field Precision routines handle run control and all matters related to the division of space. Tasks include the organization of input/output data for large distributions of particles, calculation of statistics, identification of material boundaries, generation of escape-particle records, variance reduction techniques, creation of records of spatial variations of dose and control of parallel operation. Other programs of the GamBet package address mesh generation and interactive analysis of results. The basic GamBet suite includes the components listed in Table 1. Table 2 lists the Field Precision programs that produce compatible input for GamBet.

GamBet employs a unique approach to Monte Carlo calculations with several advantages over other programs:

1. Conformal meshes are used for the division of the material volume, giving high-accuracy representations of slanted or curved boundaries.
2. The effects of arbitrary 2D and/or 3D electric and magnetic fields may be included.
3. Sophisticated graphical pre- and post-processors are available for mesh generation and the analysis of dose distributions and particle orbits.
4. The program accepts direct input of electron or positron distributions from the Trak and OmniTrak codes.
5. Dose quantities are recorded on the conformal mesh; therefore, each element acts as a subzone. The user can make analysis decisions in the post-processing stage, reducing the need to re-run simulations.
6. Dose distribution files may be ported directly to TDiff and HeatWave for static or dynamic thermal calculations.
[^0]Table 1: Components of the GamBet code suite

Program	Function
mesh.exe	Definition of 2D geometries, preparation of conformal triangular meshes.
geometer.exe	Interactive definition of 3D geometries
metamesh.exe	Creation of 3D conformal hexahedron meshes from geometric information
gambet.exe	Main technical program for Monte Carlo simulations
gambetmp.exe	A background version of the technical program called for runs with parallel processing.
gbview2.exe	Interactive post-processor for plots and analysis of 2D dose files and trajectory records
gbview3.exe	Interactive post-processor for plots and analysis of 3D dose files and trajectory records
gendist.exe	Utility to create or to analyze large input particle distributions

Table 2: Field Precision programs that produce input files compatible with GamBet

Program	Function
estat.exe	2D electric field solutions
permag.exe	2D magnetic field solutions
trak.exe	Simulation of 2D electron guns and transport devices, creation of input particle distributions
hiphi.exe	3D electric field solutions
magnum.exe	3D magnetic field solutions
omnitrak.exe	Simulation of 3D electron guns and transport devices, creation of input particle distributions

7. Particle output files may be used as input for subsequent runs or ported to Trak and OmniTrak.
8. Advanced variance-reduction techniques are employed, including interaction forcing and splitting/reduction of particles that enter specified regions of the solution volume.
9. The code supports efficient parallel processing on multi-core Windows computers.

To install the GamBet package, download and run gambetsetup.exe. The installation utility creates a new directory and then adds programs, instruction manuals, material data files and examples. The executables and the instruction manuals are located in the directory $C: \backslash$ GAMBET. The Penelope data files are in the directory $C: \backslash$ GAMBET \backslash REFERENCE. The installer also adds a shortcut to gblaunch. exe on the desktop.

The programs must be activated before they can be used. Instructions are supplied with the package. Note that activation is independent of installation. You can update the programs without affecting activation of the computer. To avoid update problems, we recommended that you do not store data and other files to the program directory $\mathrm{C}: \backslash$ GAMBET.

2 GBLaunch

The first step to run any of the programs in the GamBet package is to set up gblaunch.exe, the program controller. The utility helps you to organize your work in two ways:

- Only one shortcut is required on your desktop, minimizing clutter.
- All programs open in a specified data directory, eliminating redundant trips through the directory tree.

2.1 Setting the program and data directories

Figure 1 shows the screen display of the GBLaunch controller. To begin, click the Program folder button in the Control group. In the dialog move to the directory that contains the executables and click $O K$. The default location is \backslash fieldp \backslash gambet. The buttons in the technical group should all become active. An inactive button indicates a missing executable. Setting the program directory also sets a registry entry so that GamBet can locate the folder that contains Penelope data files.

It is a good practice is to collect all input and output files for related GamBet solutions in a specific data directory. Use the Data Folder button to set the current location. Programs that are opened after the change will read and write to the directory. (Note that the setting does not affect previously-opened programs.) The Information area at the bottom of the control box shows: 1) the current data directory, 2) the last operation performed and 3) the program directory.

2.2 Creating and running tasks

GamBet programs are optimized for the latest generation of multi-core or multi-processor PCs. The Professional solution programs (MetaMesh, GamBet,) feature true parallel operation. A second feature in both the Basic and Professional programs is the capability to run multiple independent calculations simultaneously. All solution programs can run in the background if launched from a Windows batch file. Background operation is automatic and faster than running in a window. The Create task and Run task commands in GamBet make it easy to use batch files. With the commands you can 1) quickly define multi-step calculations (tasks) in an interactive dialog, 2) launch simultaneous tasks in the background and 3) find out which tasks are running.

The Create task button calls up the dialog of Figure 2. Supply a file prefix FPREFIX that indicates the function of the task. The task information will be stored in a DOS batch file FPREFIX.BAT created in the current GamBet data directory. Commands in the file are compatible with all recent Windows versions including Windows 7. Each row represents an operation (batch file command). The first column defines the action. Clicking on a cell brings up a menu that includes all GamBet programs capable of background operation. In addition, several relatively safe DOS commands are included (ERASE, COPY, MOVE, RENAME and REM). All commands operate on a file (FileIn column). The DOS commands COPY, MOVE and RENAME

Figure 1: GamBet program launcher

Figure 2: Create task dialog
require a second file name (FileOut column). You can type file names in the cells. By default, the files are in the GamBet working directory, but you can include path information if the files are in other directories. Alternatively, you can click in a cell and then pick the Select file command to use the standard Windows dialog for choosing files anywhere on the computer. For the GamBet programs, the dialog displays only files with appropriate suffixes (e.g., *. GIN for \mathbf{E}).

Click the $O K$ button when the sequence is complete to create the batch file. Here is an example:

```
REM GamBet batch file, Field Precision
START /B /WAIT C:\fieldp\gambet\mesh64.exe C:\Temp\convergegun
START /B /WAIT C:\fieldp\gambet\gambet64.exe C:\Temp\convergegun
START /B /WAIT C:\fieldp\gambet\gbview264.exe C:\Temp\convergegun
ERASE *.?ls
START /B /WAIT C:\fieldp\gambet\notify.exe
IF EXIST Electrode01.ACTIVE ERASE Electrode01.ACTIVE
```

The operations listed perform a complete GamBet calculation in the background and then erase all listing files. The example has some notable features:

- The operations are performed sequentially because data from one operation may be used in the next. To run calculations in parallel, define and run multiple tasks.
- You can modify the file with an editor if you are familiar with DOS commands.
- The DOS commands recognize the standard wildcard conventions (* for any character grouping, ? for any character).
- The programs adds the command notify.exe to the task sequence if Audio alarm was checked. In this case, the computer beeps when a task is completed.
- The final command to erase a file FPREFIX. ACTIVE is added to all batch files. The presence of the file indicates that the task is running.

Click the Run task button when you have created tasks or moved predefined task files to the data directory. The dialog (Figure 3) organizes tasks into two groups: ones that are available to run and ones that are currently running (i.e., FPREFIX.ACTIVE has been detected). To launch a task, choose one from the top list and click $O K$. The program creates a file FPREFIX. ACTIVE and runs the batch file. The program sequence runs silently in the background. In the meantime, you can prepare other inputs or run other tasks.

2.3 Tools

You will probably use additional software tools working with GamBet and other technical programs. You can set GamBet to launch your favorite utility programs. To define a text editor, press the Setup tools button in the Control section. In the dialog, choose the Editor option. Then, move to the appropriate directory and select the program. When you exit the procedure, the Editor button in the Tools section becomes active.

Figure 3: Run task dialog

You can use the Set tools command to define two other utilities. For the File manager option, select a program like Windows Explorer or FreeCommander. Use the Data analysis button for a spreadsheet, plotting program or mathematical analysis software. The textitCommand button opens a DOS window if you want to run programs from the command prompt or under the control of your own batch files.

3 Simulation modes

There are three available modes for a GamBet simulation:

- SingleParticle
- ContinuousBeam
- PulsedBeam

The mode determines units of data quantities recorded in the output files. GamBet sets the mode depending on entries in the source or particle input lists and the presence of the TPULSE command (see Table 3). The single-particle mode corresponds to a standard Monte Carlo run where quantities are weighted according to the number of input particles. In the continuous-beam mode, a current or flux is associated with each model particle. In this case, GamBet can calculate dose rates and particle flux between regions. In the pulsed-beam mode, the model particle current is active for a specified time. In this case, the code calculates dose and integrated flux (total number).

Table 3: GamBet simulation modes

Mode	Current/flux entry in PLIST or SLIST data	TPULSE specified
SingleParticle	No	(No effect)
ContinuousBeam	Yes	No
PulsedBeam	Yes	Yes

The units of deposited dose (Table 4) depend on the calculation mode. The standard SI dose unit is the gray ($1 \mathrm{~Gy}=1 \mathrm{~J} / \mathrm{kg}=100 \mathrm{rads}$). The following considerations apply to the calculation of deposited dose in planar 2D calculations.

- In the single-particle mode, each incident primary particle is treated as one particle/m uniformly distributed in z.
- In the continuous-beam and pulsed-beam modes, the flux value for a primary particle is in A / m for electrons and positrons and particles $/ \mathrm{s} / \mathrm{m}$ for photons. The flux is assumed to be uniformly distributed in z.

The unit of particle flux between regions is particles/primary for all calculation modes and symmetries. Table 5 shows units of energy flux between regions.

Table 4: Recorded dose quantities

Mode	Recorded quantity
SingleParticle	$\mathrm{eV} / \mathrm{kg} /$ primary
ContinuousBeam	$\mathrm{J} / \mathrm{kg} / \mathrm{s}(\mathrm{Gy} / \mathrm{s})$
PulsedBeam	$\mathrm{J} / \mathrm{kg}(\mathrm{Gy})$

Table 5: Recorded energy-flux quantities

Mode	Symmetry	Recorded quantity
SingleParticle	Planar2D,Cylindrical2D,3D	$\mathrm{eV} /$ primary
ContinuousBeam	Planar2D	$\mathrm{J} / \mathrm{s} / \mathrm{m}$
	Cylindrical2D,3D	J / s
PulsedBeam	Planar2D	J / m
	Cylindrical2D,3D	J

4 Structure of the GamBet control script

The GamBet script is a text file with data lines containing commands and parameters. The program makes no distinction between upper and lower case. Entries on a line may be separated by the following delimiters:

```
Space
Comma [,]
Tab character
Colon [:]
Equal sign [=]
Left parenthesis [(]
Right parenthesis [)]
```

You may use any number of delimiters in a line. This means that you can add indentations and customize the appearance of the script. GamBet ignores blank lines and comment lines. Comment lines begin with the symbol ${ }^{*}$ ' (asterisk).

Most parameters are real numbers. The following formats are valid.
1.000
5.67E6
6.8845E+09

5
The final number is interpreted as 5.0.
The GamBet script has the following organization:

```
GEOMETRY
    (Geometry commands)
END
COMPOSITION
    (Composition commands)
END
SOURCE
    (Source commands)
END
PROCESS
    (Process commands)
END
```

The four sections must appear in the order shown. Allowed commands may be placed in any order within a section. GamBet reads and analyzes all commands of a section before proceeding with calculations. The exception is the DUnit command for coordinate conversion. The command affects only subsequent commands.

The script sections have the following functions:
GEOMETRY Load a 2D or 3D mesh that defines the material geometry. Optionally, you can also load TriComp or AMaze solution files to define applied electric and magnetic fields.

COMPOSITION Define material properties for Penelope calculations and associate materials with the regions of the geometric mesh.

SOURCE Specify the properties of incident particles (electrons, photons and positrons).
PROCESS Control the Monte Carlo calculation.
The following example illustrates a simple GamBet script:

* File: COPPERSHEET.GIN

GEOMETRY
DUnit = 1.0E6
GFile2D = CopperSheet.MOU (Rect)
END
COMPOSITION
Material $=29$
Region(1) = 1
END
SOURCE
SList
$\begin{array}{lllllll}\mathrm{E} & 20.0 \mathrm{E} 6 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\ 0.00\end{array}$
End
NPMult $=100000$
END
PROCESS
EAbs (Electron) $=1.0 \mathrm{E} 5$
EAbs (Photon) = 1.0E5
EAbs(Positron) = 1.0E5
DsMax(1) $=0.20$
PlotOn(1)
END
ENDFILE

5 Using the setup dialog to create a script

The setup dialog is a quick and easy way to construct basic GamBet control scripts. The interactive environment helps you remember commands and syntax rules. You can use the dialog to create a basic structure and then add details or modify parameters with a text editor. This chapter briefly summarizes the function of fields in the dialog. Chapters 6 through 9 give detailed information on standard and advanced commands.

Figure 4: Setup dialog, Geometry tab
GamBet calculations require a geometry mesh. A two-dimensional mesh file (FPREFIX.MOU) or a three-dimensional file (FPREFIX.MDF) must be available to use the setup dialog. In the main menu, click on the Setup command or tool. In the file selection dialog, choose the input mesh file. GamBet checks the number of regions in the mesh and reads the region names if they are available. If the file is a valid mesh, the dialog of Fig. 4 appears. Note the tabs at the top of window: there is one tab for each of the command groups in the script (Chap. 4).

The Geometry tab is active in Figure 4. The following fields apply to all scripts.

Dimension units

This entry informs GamBet of the length units used in mesh file. Click the down-arrow to display the full list of options. Choose Custom if the desired unit is not included in the list. In this case, the program makes a dummy entry in the script that you can complete with a text editor.

Figure 5: Setup dialog, Composition tab

Symmetry

This field is active only for two-dimensional meshes. The Rectangular option implies that there are variations in x and y with infinite length along z. For the Cylindrical option, the system has azimuthal symmetry with variations along r and z.

Enter values in fields of the electric and magnetic field groups if you want to load information from output files generated by EStat, HiPhi, PerMag or Magnum. Electrostatic and magnetostatic fields act on electrons and positrons in the calculation.

File prefix

Enter the prefix of the field data file. The string must be from 1 to 46 characters in length. Depending on the setting of $2 \mathrm{D} / 3 \mathrm{D}$ radio buttons, the program adds the appropriate suffix. For electric fields, the resulting file names are FPREFIX.EOU (EStat, 2D) and FPREFIX.HOU (HiPhi, 3D). The file names for magnetic fields are FPREFIX.POU (PerMag, 2D) and FPREFIX.MOU (Magnum, 3D). For the Table option in the magnetic field group, the resulting file name is FPREFIX.TAB.

Bx0, By0, Bz0

Define uniform values of magnetic field along the x, y and z direction. Enter component values in tesla.

Figure 5 shows the display for the second tab. Values set the the material composition of regions in the simulation volume. The grid has one row for each region of the mesh. The columns of the grid show the region number, the region name (if available) and the material composition. To define a material, move the mouse into a Material box and click the left button.

Figure 6: Setup dialog, Source tab
The drop-down list shows the full set of Penelope materials (Chap. 17) and the additional choice of Void (vacuum). Scroll through the list to find an appropriate material and then click the left mouse button to set the composition for the box. Note that the Penelope numbers initially follow the atomic number of elements. After that, compounds are listed roughly alphabetically. Chapter 17 summarizes the choices. Each box in the column must be specified. The program issues an error message if there is a missing definition for a region.

Fields in the Source tab define the properties of injected particles. The following quantities must be defined for each primary particle: type (electron, photon or positron), kinetic energy, position and direction. The quantities are contained in a list with one data line for each primary particle. The list may be either incorporated in the script or imported from a separate file. There are two list formats:

- The native GamBet format, where the list file has a name of the form FPREFIX. SRC (Sect. 8.1).
- The input/output format of Trak and OmniTrak, where the list file has a name of the form FPREFIX.PRT (Sect. 8.2).

The following two fields appear in the Input file group.

File type

Specifies whether input will be in the $S R C$ or $P R T$ format.

File prefix

The prefix of a file (FPREFIX.SRC or FPREFIX.PRT) of particle data lines available in the working directory. Sections 8.1 and 8.2 describe the file formats. If there is no entry in this file, GamBet creates a dummy entry in the script of the form:

```
SList
```

* Type Kinetic x y z ux uy uz [Current/flux]
* energy
* ==12
(Add particle parameters)
End

In this case, you must add particle data lines with a text editor.
The Control parameters group has the following entries:

Showers/primary

Set the parameter NPMult, the number of showers to initiate per primary particle. Larger values give improved statistics. Regarding the assignment of deposited dose, if a primary particle carries current I, then the current per shower particle is $I / N_{p m u l t}$.

TPulse

Set the pulselength Δt_{p} for the input beam of primary particles. Enter the value in seconds. This parameter is active only if current or flux is associated with the primary particles. If a value is supplied, GamBet records accumlated dose in the output file. If Δt_{p} is not defined, the program records the dose rate.

The entries in the final two groups (Shift and Rotation) may be used to apply global translations or rotations to the primary particles.

XShift, YShift, ZShift

Shift the initial positions of particles relative to the geometry mesh. Values are modified according to $x^{\prime}=x+X_{\text {shift }}, \ldots$. Enter values in units set by the specified dimension units. Note that rotations are applied before shifts.

XRot, YRot, ZRot, RotOrder

Rotate the particle direction vectors relative to the geometry mesh. Enter the values of angles in degrees. The optional string parameter RotOrder specifies the order of rotations. Rotations are applied before shifts.

Values in fields of the Run control tab of Fig. 7 control the Monte Carlo calculation.

Maximum energy

The maximum energy $E_{\text {max }}$ for the calculation of cross sections by Penelope. Enter the value

Figure 7: Setup dialog, Process tab
in eV (electron volts). Usually, $E_{\max }$ is slightly higher than the maximum energy of primary particles. In a solution with electric fields be sure to include the possibility of electron or positron acceleration.

Absorption energy

A particle is absorbed in a material region when its energy drops below a value $E_{a b s}$. In this case, the remaining particle kinetic energy is deposited in the currentlly-occupied element. The value of $E_{a b s}$ must be greater than or equal to 50.0 eV , the lower limit in the Penelope tables. Higher values substantially reduce the run time.

Interaction forcing improves statistics for low-probability events. The program adjusts particle weights and interaction probabilities to maintain unbiased statistics.

Interaction type

The two choices are bremsstrahlung and pair production. The first option is useful for modeling X-ray targets while the second option may be applied to positron sources.

Forcing factor

Enter a real number greater than 1.0, typically 10.0 to 100.0 .
The fields in the last group control aspects of the Monte Carlo simulation.

Step size

This field is the maximum allowed transit distance for particles per event step. Enter a value in the specified dimension units. The maximum step size should be about $1 / 10$ of the dimension of the smallest material region.

NStep

The maximum number of event steps in a shower. The purpose of the limit is to prevent infinite calculations (i.e., electron in a void trapped by a magnetic field). The default value is 500,000 . Increase the number if particles stop early. You can check for the condition by inspecting the energy conservation statistics in the listing file (GLS).

Run time

The maximum time for the calculation. Enter the integer value in seconds. GamBet stops at the maximum run time and records data for the completed showers. This value may be useful for long runs under batch file control.

6 Geometry commands

```
COMMAND SUMMARY
DUNIT DUnit
GFILE2D FileName [Rect, Cylin]
GFILE3D FileName
EFILE2D FileName [EMult]
EFILE2D FileName BTHETA [EMult] [BBMult]
EFILE3D FileName [EMult]
BFILE2D FileName [BMult]
BFILE3D FileName [BMult]
BTABLE: FileName [ZOffset,Zult, BOffSet, BMult]
BUNI: Bx0 By0 Bz0
SHIFT [E,B] XShift YShift ZShift
ROTATE [E,B] RotX, Roty, Rotz
```

GamBet can employ geometric and field information from three independent conformal meshes.
GFILE [Required] Geometry of materials used for Penelope operations.
EFILE [Optional] Applied electric field.
BFILE [Optional] Applied magnetic field.
You can combine 2D and 3D meshes in a single simulation. You can also combine 2D meshes having different symmetries (planar or cylindrical). The output dose file has the same dimensionality and symmetry as the GFILE.

The following considerations apply when you combine meshes.

- By default the origins of the meshes are coincident. Here the origin is the point where $(x, y, z)=(0,0,0)$. The GFILE defines the reference coordinate system. Use the SHIFT command to translate the EFILE or BFILE meshes.
- By default, the coordinate axes are colinear. A cylindrical mesh has z along the z direction in 3D space and r lies in the $x-y$ plane. A planar mesh has variations in $x-y$ and infinite length along z. Use the ROTATE command to rotate the EFILE and BFILE meshes relative to the GFILE mesh.
- If the GFILE is two-dimensional, the output dose distributions have two-dimensional symmetry, even if the particle distribution in the simulation is not symmetric. Non-symmetric particle distributions may be specified in the SOURCE section or could result from motion in a field with different symmetry. The dose in a file with planar symmetry is integrated along z; therefore, only the $x-y$ variations are displayed. In a cylindrical file, energy is assigned to $r-z$ elements independent of the model particle azimuth.

DUNIT Unit

Enter a conversion factor for coordinates that appear in subsequent commands. The conversion also applies to coordinates in the GFILE for input from Mesh and MetaMesh. In this case, ensure that the DUNIT command appears before the GFILE2D or GFILE3D commands. The Unit argument may be one of the following strings for common units: angstrom, nanometer, micrometer, mil, mm, cm, inch, foot, yard, meter, kilometer or mile. For custom units, enter a real number equal to the number of Mesh or MetaMesh units per meter. The quantity is the number of length units per meter. For example, if coordinates in the GFILE were specified in microns, set DUnit $=1.0 \times 10^{6}$ and enter coordinates in subsequent commands in microns.

6.1 Loading the geometry file

GFILE2D FileName [Rect, Cylin]

Define the material geometry for the Monte Carlo calculation. The command requires an output file from Mesh (FName.MOU) or the TriComp solution programs EStat (FName.EOU),PerMag (FName.POU) or Pulse (FName.POU). The file must be available in the working directory. The keywords RECT or CYLIN must be included when loading a file from the 2D Mesh program. In the RECT option, the program interprets the geometry as variable in $x-y$ and infinite in z. In the CYLIN option, the program interprets the geometry as varying in $r-z$ with symmetry along θ. When loading information from a field solution file, GamBet extracts the mesh information and reads a file parameter to determine the symmetry.

GFILE3D FileName

Define the material geometry used for the Monte Carlo calculation. The command requires an output file from MetaMesh (FName.MDF). The program interprets the geometry as varying in $x-y-z$.

6.2 Loading and modifying electric field information

EFILE2D FileName [EMult]

Load an electric field solution from EStat. Note that the mesh need not have the same symmetry or cover the same volume as the GFile. The electric field equals zero at points outside the EFile boundaries. The optional parameter EMult is a field scaling factor. Values of electrostatic potential are multiplied by EMult as they are loaded. For example, a value EMult $=0.5$ reduces electric field components by a factor of 2.0.

EFILE2D FileName BTHETA [EMult] [BBMult]

The special form of the command loads an electric field solution created with the EDUMP command by the Trak code running in the RELBEAM mode. Trak has been modified to record values of the beam-generated toroidal field $\left(B_{\theta}\right)$ at nodes in addition to the electrostatic potential. The extra information will be loaded into GamBet in response to the keyword BTHETA. In this
case, electron orbits will include the effect of the toroidal magnetic field. Values of ϕ and B_{θ} may be scaled with the optional parameters EMult and BBMult.

EFILE3D FileName [EMult]

Load an electric field solution from HiPhi. Note that the mesh need not have the same symmetry or cover the same volume as the GFile. The electric field equals zero at points outside the EFile boundaries. The optional parameter EMult is a field scaling factor.

ROTATE E RotEx, RotEy, RotEz [RotOrder]

Rotate the electric field solution relative to the geometry mesh. Enter the values of angles in degrees. The optional string parameter RotOrder specifies the order of rotations (i.e., ' ZX ', 'ZYX'). Only the operations specified in RotOrder are performed. The default is RotOrder $=$ 'XYZ'. Note that rotations are applied before translations.

SHIFT E XEShift YEShift ZEShift

Shift coordinates of the electric field solution relative to the geometry mesh. Enter values in units set by DUnit. Note that rotations are applied before translations.

6.3 Loading and modifying magnetic field information

BFILE2D FileName [BMult]

Load a magnetic field solution from PerMag or Pulse. Note that the mesh need not have the same symmetry or cover the same volume as the GFile. The magnetic field equals zero at points outside the BFile boundaries. The optional parameter BMult is a field scaling factor.

BFILE3D FileName [BMult]

Load a magnetic field solution from Magnum. Note that the mesh need not have the same symmetry or cover the same volume as the GFile. The magnetic field equals zero at points outside the BFile boundaries. The optional parameter BMult is a field scaling factor.

BTABLE: FileName [ZOffset,ZMult, BOffSet, BMult]

Determine an applied solenoid-type magnetic field from a table of values along the z axis at $r=0.0$. The field must have cylindrical symmetry. The parameter FileName is the full name of a tabular file. The file contains up to 256 data lines of the form:

```
z Bz(0,z)
```

The file terminates with an EndFile command. The table may also contain comment and blank lines. The positions z should be specified in units set by the current setting of DUnit. Supply values of B_{z} in tesla, or you can use the BMult parameter to convert from other units. For example, if the data are given in gauss, use $\operatorname{BMult}=1.0 \times 10^{-4}$. The following illustrates a table

```
* Table from SOL_LENS.BOU
* z Bz
* =======================
    -9.000E+00 4.421E-06
    -8.852E+00 5.926E-05
    -8.703E+00 1.173E-04
    -8.555E+00 1.780E-04
        9.258E+00 1.014E-04
        9.406E+00 7.838E-05
        9.555E+00 5.670E-05
        9.703E+00 3.685E-05
        9.852E+00 1.767E-05
        1.000E+01 7.111E-11
ENDFILE
```

Optionally, you can supply four real numbers as parameters in the command: ZOffSet, ZMult, BOffSet and BMult. The parameters modify table values entered into the program according to

```
zprog = ZMult*ztab + ZOffSet,
Bzprog = BMult*Bztab + BOffSet
```

A cubic spline routine is used to interpolate values of B_{z} along the axis and numerical derivatives are used to calculate off-axis values $B_{r}(r, z)$ and $B_{z}(r, z)$. As a result, estimates of B_{z} are limited to terms of order r^{2}. This means that variations of B_{r} are limited to terms of order r (linear variation).

BUNI: Bx0 By0 Bz0

Set uniform components of the magnetic field. Enter the values in tesla. This command may appear in conjunction with BFile or BTable commands. In this case, the magnetic field is the sum of all sources.

ROTATE B RotBX, RotBy, RotBz

Rotate the magnetic field solution relative to the geometry mesh. Enter the values of angles in degrees. The optional string parameter RotOrder specifies the order of rotations (i.e., 'ZX', 'ZYX'). Only the operations specified in RotOrder are performed. The default is RotOrder $=$ 'XYZ'. Note that rotations are applied before translations.

SHIFT B XBShift YBShift ZBShift

Shift coordinates of the magnetic field solution relative to the geometry mesh. Enter values in units set by DUnit. Note that rotations are applied before translations.

7 Composition commands

```
COMMAND SUMMARY
MATERIAL MatNo [CONDUCTOR,INSULATOR]
MATERIAL
    namE
    COMPONENT [Symbol or atomic number] [Fraction]
    DENSITY
    CONDUCTOR
END
REGION RegNo MatNo
REGION RegNo VOID
REGION RegNo EXCLUDE
ECALC RegNo [ON, OFF]
BCALC RegNo [ON, OFF]
FULLINFO
```

Commands of the Composition section create the temporary file GAMBET.MAT (used for the Monte Carlo calculations) and associate regions of the geometric mesh with materials. Each Material statement defines a different material. Materials are numbered in the order they appear in script. The maximum number of materials is 25 . You can associated multiple regions with a single material. There are two forms of the command:

MATERIAL MatNo [Conductor, Insulator]

The integer parameter MatNo corresponds to the number of a predefined Penelope material (1-279). For a list of available materials, see Sect. 17 or the View material file command in the GamBet File menu. The optional string parameter [Conductor or Insulator] overrides the default material state for the generation of Penelope cross sections (metallic elements in the range 1-99 are set as conductors, compound materials in the range 100-280 are set as insulators). If an EFile has been loaded, the Conductor/Insulator setting affects the default status for electric and magnetic field calculations inside the material. By default, the electric field is taken as zero inside the volume of conducting regions of the geometric mesh, independent of region definitions in the electric field file. The electric field has non-zero default values inside insulators and voids. Static magnetic fields are unaffected by the conductivity status. The material status for field calculation may be changed with the ECalc and BCalc commands.

MATERIAL
 NAME
 COMPONENT [Chemical symbol or atomic number] [Fraction]
 DENSITY
 INSULATOR
 END

A Material command with no parameters signals the beginning of a material section. You can define new materials with this construct. The section must terminate with the End command. The following commands may appear in any order within the material section:

NAME MatName

Enter a name for the material (1-80 characters). The name should not contain any of the standard delimiters. Examples of valid names: Carbon_Dioxide, High Density_Lucite, ...

COMPONENT [Chemical symbol or atomic number] [Fraction]

A material section may contain up to 20 Component commands. Each command defines an elemental component of the material. The second parameter (string or integer) is the chemical symbol or the atomic number (i.e. Ga or 31, C or 12). The third parameter (real) is the number of atoms per molecule or stochiometric fraction. Fractional values are permitted for alloys and mixtures. For example, the following lines describe acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$:
Component C 2.0
Component H 4.0
Component O 2.0

DENSITY

Material density in $\mathrm{gm} / \mathrm{cm}^{3}$.

INSULATOR, CONDUCTOR

Conductivity state of the material

REGION RegNo MatNo

This command associates a region of the geometric mesh with a defined material. The integer parameter RegNo is the region number and MatNo is the material number. For example, to specify that region 6 consists of the third material to appear in the Composition section, use the command:

REGION(6) $=3$
GamBet issues an error message if any regions remain unassigned or if MatNo exceeds the number of defined materials.

REGION RegNo VOID

Assign the void property to region RegNo. Particles move through voids without interaction. Electric and magnetic fields may act on electrons or positrons in voids. You can speed calculations by representing a region with infrequent interactions (i.e., a low-density gas) as a void.

REGION RegNo EXCLUDE

Assign the exclusion property to region RegNo. Particles that enter an exclusion region are immediately stopped and their properties at the region boundary are recorded in the escape file. In other words, they are treated in the same way as particles that leave the solution volume. This command is useful for defining a non-planar exit boundary in a three-dimensional solution. It may also be applied to find the distribution of particles entering a region without tracking interactions inside the region.

ECALC RegNo [ON, OFF]

Over-ride default settings to specify whether electric fields are zero [Off] or non-zero [On] inside a region. This command has an effect only when an EFile has been loaded.

BCALC RegNo [ON, OFF]

Over-ride default settings to specify whether magnetic fields are zero [Off] or non-zero [On] inside a region. This command affects all sources of magnetic field (BFILE, BTABLE, BUNI).

FULLINFO

If this command is issued, GamBet records full information reported by the Penelope subroutines during the creation of the file GAMBET.MAT. This information is useful only to users familiar with the intricacies of Penelope.

8 Source commands

```
COMMAND SUMMARY
SLIST
    (Data lines)
END
SFILE SourceFilePrefix
PLIST
    (Data lines)
END
PFILE PartFilePrefix
NPMULT NPerPrimary
TPULSE TPulse
SHIFT XPShift YPShift ZPShift
ROTATE RotPX RotPY RotPZ [RotOrderP]
```

Source commands define the set of primary particles that initiate showers of electrons, photons and positrons. Here, we use the term shower to refer to the set of interactions and secondary particles that occur for each instance of an injected primary particle. For example, if there is a single primary particle and the parameter $N_{p m u l t}=500$, then GamBet initiates 500 showers by injecting the primary particle 500 times with a statistical weighting factor of $1 / 500$.

There are four ways you can specify primary-particle information:

1. Lists of particles that you prepare with an editor, spreadsheet or your own software.
2. Source files with large numbers of particles generated by the GenDist utility from script commands.
3. The particle escape file from a previous GamBet run.
4. Output files of electron or positron parameters from the programs Trak or OmniTrak.

The maximum number of unique primary particles is $1,000,000$. You can initiate multiple showers for each primary particle with the NPMult command.

It is important to clarify the definition of a primary particle:

- Each data line in the SList, SFile, PList or PFile commands defines a primary particle.
- The total particle flux into the solution volume is the sum of the fluxes of primary particles. For example, if the list contains 10 electrons that each carry 1 mA of current, the injected current is 10 mA .
- Primary particles may be split into multiple showers using the NPMult command for improved statistics. If $N_{\text {pmult }}>1$, then each primary particle is injected NPMult times with a weight of $1.0 / N_{p m u l t}$. For example, if the list contains one electron that carries current $2.0 \mu \mathrm{~A}$ and $N_{\text {pmult }}=20$, then 20 shower calculations are initiated by identical electrons that each carry $0.1 \mu \mathrm{~A}$.

8.1 Particle input from source files

SLIST

(Data lines)
END
The purpose of the SList structure is to read input particle data from source data lines in the GamBet script. Each primary particle in the SList structure is defined by a data line. A line may contain 8 or 9 quantities:

```
Type Kinetic x y z ux uy uz [Current/flux]
    energy
```

Line entries may be separated by any valid delimiters. The quantities in the line have the following meanings:

Type

A string quantity that gives the type of particle. The following entries are recognized:
Electron: "1", "E" or "E-"
Photon: "2" or "P"
Positron: " 3 " or "E+"

Kinetic energy

The particle initial kinetic energy in electron volts ($1.0 \mathrm{eV}=1.6021 \times 10^{-19}$ joules).

$\mathrm{x}, \mathrm{y}, \mathrm{z}$

The initial particle position in meters or units set by DUnit. The initial position must be inside the boundaries of the geometric mesh. If you want to start particle at a boundary, pick a position slightly inside the solution volume.

$\mathbf{u x}, \mathrm{uy}, \mathrm{uz}$

A vector parallel to the initial particle direction. GamBet converts the quantities to a unit vector.

Current/flux

An optional parameter to represent the current carried by primary electrons and positrons or the flux of photons. For cylindrical or 3D geometric meshes, enter the current in A or flux in photons/s. For a planar geometric mesh, enter the line current density J in A/m or the line flux in photons/s/m. Note: if a primary particle carries current I and GamBet creates NPMult showers per primary, the input current assigned to each shower is $I / N_{\text {pmult }}$.

As an example, the following line designates a 1.7 MeV electron beam moving in the z direction at position (1.0, 2.0, 0.0) carrying a current of $1.0 \mu \mathrm{~A}$:

E- $1.76 \mathrm{E} 61.00 \quad 2.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 1.00 \quad 1.0 \mathrm{E}-6$

SFILE SPrefix

This command directs GamBet to read particle data lines from an external file with a name of the form SPrefix.SRC. The file prefix contains from 1 to 32 characters. The file must be available in the working directory. A particle file may consist of blank lines, comments and from 1 to 20000 data lines. Data lines have the same format as those of the SList command. The file must terminate with the End or EndFile command.

8.2 Particle input from Trak and OmniTrak

Standard particle list files (PName.PRT) created by Trak and OmniTrak contain a data line for each particle. The list may contain blank and comment lines and must terminate with the End command. Comment lines are marked by the asterisk $\left(^{*}\right)$ symbol. Particle information lines may be inserted directly into the GamBet script with the PList construct or they can be read from an independent file with the PFile command. For both the PList and PFile commands, GamBet expects a series of text lines consisting of nine or ten real numbers.

PLIST

(Data lines)

END

The PList construct reads particle parameters from data lines in Trak or OmniTrak format in the GamBet script. Data lines have the following components:

Rest	Charge	Kinetic	X	y		Z	ux	uy	uz	[Current]
mass		energy								

Line entries may be separated by any valid delimiter. The quantities in the line have the following meanings:

Rest mass

The particle rest mass in AMU (atomic mass units), where 1.0 AMU $=1.65979 \times 10^{27}$ kg . The rest mass of electron and positrons is $5.488 \times 10^{-4} \mathrm{AMU}$. If 0.00 appears in this position, GamBet will insert the rest mass of the electron/positron. The program issues an error message if the list contains particles other than electrons and positrons.

Charge

The particle charge in units of elementary charge, 1.60210×10^{-19} coulombs. GamBet issues an error message if this entry does not equal -1.0 (electrons) or +1.0 (positrons).

Kinetic energy

The initial particle kinetic energy in electron volts ($1.0 \mathrm{eV}=1.6021 \times 10^{-19}$ joules).

x, y, z

The initial particle position in meters or units set by DUnit. The initial position must be inside the boundaries of the geometric mesh.

ux, uy, uz

A vector parallel to the initial particle direction. GamBet normalizes the values to create a unit vector.

Current

An optional parameter to represent the current associated with the primary particle. Specify the current in amperes for cylindrical or 3D geometric meshes. For a planar geometric mesh, the current represents the line current density J of a sheet particle in A / m.

PFILE FPrefix

This command directs GamBet to read particle parameter lines from an external file with a name of the form FPrefix.PRT. The file prefix contains from 1 to 46 characters. The file must be available in the working directory. A particle file may consist of blank lines, comments and from 1 to $1,000,000$ data lines. Data lines have the same format as those of the PList command. The file must terminate with the EndFile command.

8.3 Number of showers and source properties

NPMULT NPMult

The integer parameter NPMult is the number of showers to initiate per specified primary particle. For example you could represent a uniform current-density electron beam with 200 primary particles distributed in radius and choose $N_{p m u l t}=500$ to achieve good statistics. In this case, the total number of showers is $200 \times 500=100,000$. For a specified primary particle, each particle that initiates one of the 500 showers starts in the same position but follows a statistically-independent history. The initiating particle has a weight of 1.0/500 for the calculation of dose and flux.

TPULSE TPulse

This command affects how dose is recorded in the output files. Enter the value of the beam pulselength in seconds. For example, suppose the sum of primary particle currents is 2.5 A . In the absence of the TPulse command, GamBet calculates the dose rate that would result from a continuous 2.5 A beam. If the command $T_{\text {pulse }}=2.0 \times 10^{-3}$ appears, the code calculates the accumulated dose resulting from an injected charge of 5.0×10^{-3} coulomb.

ROTATE PRotX, PRotY, PRotZ [RotOrder]

Rotate the particle direction vectors relative to the geometry mesh. Enter the values of angles in degrees. The optional string parameter RotOrder specifies the order of rotations (i.e., 'ZX', 'ZYX'). Only the operations specified in RotOrder are performed. The default is RotOrder $=$ 'XYZ'. Note that rotations are applied before position shifts.

SHIFT XPShift YPShift ZPShift

Shift the initial positions of particles relative to the geometry mesh. Enter values in units set by DUnit. Note that rotations are applied before shifts.

9 Process commands

```
COMMAND SUMMARY
Penelope control
EABS [Electron,Positron,Photon] 10000.00 [MatNo]
C1 0.1 [MatNo]
C2 0.1 [MatNo]
WCC 100.0 [MatNo]
WCR 100.0 [MatNo]
RSEED ISeed1 ISeed2
EMAX EMax
FORCE [BREMS,PAIR,...] FFactor [NReg]
ENHANCE NReg NSplit
REDUCE NReg NKill
Run control
DSMAX DsMax
DSMAX NReg DsMax
TIME 600
STEPMAX 20000
PLOTON [NPInterval]
    [ElecP,PhotP,PosiP,ElecS,PhotS,PosiS]
NSEARCHWIDTH G [2]
STEPLIMIT
MCA NBins Reg01 Reg02 ... Reg10
NOESCAPE
ESCAPEFILTER Condition01 Condition02
```


9.1 Penelope control

The first set of commands discussed in this section control operation of the Penelope package. To obtain the detailed Penelope manual, click on the Penelope manual command in the Help menu of GamBet. Although a detailed knowledge of the underlying physics of Penelope is not required to run GamBet, you should be aware that the parameters may affect run accuracy and speed. The following material is adapted from the Penelope manual.

EABS [Electron,Positron, Photon] 10000.00 [MatNo]

A particle in material MatNo is assumed to be absorbed when its energy drops below a value EAbs (in eV). With this command, you can set independent absorption energies for electrons, photons and positrons. Because the interaction database is limited to energies above 50 eV , absorption energies EAbs must be larger than this value. If a value for MatNo is not given, the absorption energy is applied in all materials. Note that positrons undergo annihilation and emit two photons when they are absorbed. (Default value: 10 keV for electrons, photons and positrons.

The absorption energy values, particularly those of electrons and photons, can significantly affect the solution run time. Generally, there is no reason to track low-energy electrons with range small compared to the system size if you are not interested in details of the low-energy particle spectra. Furthermore, small values of EAbs for electrons and positrons can result in poor solution accuracy in the presence of magnetic fields (see the discussion under the DsMax command).

C1 0.1 [MatNo]

The parameter C1 marks the division between discrete and continuous calculations for electron or positron scattering. The quantity equals the average angular deflection $(1-\overline{\cos (\theta)})$ produced by multiple elastic scattering along a path length equal to the mean free path between hard elastic events. The default value is $C_{1}=0.05$, and the maximum allowed value is 0.2 . If MatNo is not specified, the value is applied in all materials of the solution volume.

C2 0.1 [MatNo]

The parameter C2 marks the division between discrete and continuous calculations of electron or positron energy loss. The quantity equals the maximum average fractional energy loss between consecutive hard elastic events. The default value is $C_{2}=0.05$, and the maximum allowed value is 0.2 . If MatNo is not specified, the value is applied in all materials of the solution volume.

WCC $\mathbf{1 0 0 . 0}$ [MatNo]

The parameter $W c c$ is the cutoff energy loss (in eV) for hard inelastic electron collisions. If MatNo is not specified, the value is applied in all materials of the solution volume. The default is $W_{c c}=1000 \mathrm{eV}$.

WCR 100.0 [MatNo]

The parameter $W c r$ is the cutoff energy loss (in eV) for hard bremsstrahlung emission. If MatNo is not specified, the value is applied in all materials of the solution volume. The default is $W_{c r}=1000 \mathrm{eV}$.

The control parameters determine the accuracy and speed of the simulation. For highest accuracy at low energy the quantities $C 1$ and $C 2$ should have small values (0.01). With larger values the simulation gets faster at the expense of some loss in accuracy. The cutoff
energies $W c c$ and $W c r$ mainly influence the simulated energy distributions. The simulation speeds up by using larger cutoff energies, but if these are too large the simulated low-energy distributions may be somewhat distorted. In practice, simulated energy distributions are found to be insensitive to the values of $W c c$ and $W c r$ when they are less than the bin width used to tally the energy histograms. Thus, the desired energy resolution determines the maximum allowed cutoff energies. The reliability of the whole simulation rests on a single condition: the number of steps per primary track must be 'statistically sufficient' (i.e. larger than ~ 10).

RSEED ISeed1 ISeed2

Set a random seed for the simulation by supplying two integer values. You can use this command to ensure that a simulation generates identical results each time it is run. The default is to choose seed values set by the current clock time to generate statistically independent results in each run.

EMAX EMax

Sets a maximum energy for the cross-sections generated in GAMBET.MAT. In a solution with electric fields, be sure to allow some slack to account for acceleration and/or numerical inaccuracies in the orbit simulation. If the EMax command does not appear, GamBet estimates a value from the energies of particles defined in the Source section. For an incident positron with kinetic energy T_{e}, the maximum energy is taken as $E_{\max }=1.21 \times\left(T e+5.11 \times 10^{5}\right) \mathrm{eV}$ to account for the kinetic energy of annihilation photons.

9.2 Variance reduction control

The next set of commands addresses processes often gathered under the term variance reduction. Here the intent is to improve statistics for a given run time by devoting resources to critical interactions of interest while de-emphasizing reactions that have little effect on the results. You must perform sufficient checks to ensure that results derived under the following commands are physically correct for your application (i.e., making test runs with and without the application of variance reduction).

FORCE [BREMS,PAIR] Factor [NReg]

Define a forcing factor to increase the number of particles generated as the result of lowprobability events. GamBet automatically adjusts particle weights and interaction probabilities to maintain unbiased statistics. The second keyword gives the interaction type. Two options are available: Brems (generation of bremsstrahlung radiation by energetic electrons and photons) and Pair (creation of electron/positron pairs by energetic photons). The third parameter is the forcing factor for the interaction (a real number larger than 1.0). The final integer parameter NReg is the number of the region in the geometric mesh where forcing should be applied. If NReg does not appear, forcing applies in all regions. Note that large forcing factors (>100) may skew the statistics and also exhaust the available storage in the secondary-particle stack. GamBet includes a warning in the listing file if stack overflow errors occurred during a run.

ENHANCE NReg NSplit [ElecP, PhotP, PosiP, ElecS, PhotS, PosiS]

You can use this command to improve statistics in particular regions of the solution volume. Any particle that enters region NReg is split into NSplit particles with weights adjusted by a factor $1.0 / N_{\text {split }}$ to preserve unbiased statistics. The integer quantity NSplit (the enhancement factor) must be greater than 1 . This command is most effective if it is applied to a remote region that receives a small fraction of the particle flux created in the solution. The script may contain multiple Enhance commands. If you include from 1-6 optional string parameters, GamBet applies enhancement only to the specified classes of particles : ElecP (primary electrons), PhotP (primary photons), PosiP (primary positrons), ElecS (secondary electrons), PhotS (secondary photons), PosiS (secondary positrons).

REDUCE NReg NKill [ElecP, PhotP, PosiP, ElecS, PhotS, PosiS]

This command reduces the code resources devoted to particle tracking in region NReg by applying a Russian-roulette technique. A particle that enters the region is killed with probability $P_{\text {kill }}=1.0-1.0 / N_{\text {kill }}$. If it survives, its weight is increased by a factor $1.0 /\left(1.0-P_{\text {kill }}\right)$. The integer quantity NKill (the reduction factor) must be greater than 1 . This command is useful if the solution volume contains a large, remote region that makes only a small contribution to interactions in the solution volume. A script may contain multiple Reduce commands. If you include from 1-6 optional string parameters, GamBet applies reduction only to the specified classes of particles : ElecP (primary electrons), PhotP (primary photons), PosiP (primary positrons), ElecS (secondary electrons), PhotS (secondary photons), PosiS (secondary positrons).

9.3 Simulation control

The remaining commands control general features of the simulation.

DSMAX [NReg] DsMax

GamBet tracks electrons and positrons that interact with materials and move in electric and magnetic fields by dividing the trajectory into a number of small steps of length Ds. This command may be used to set a global value or individual region values for the maximum step size. The default value for all regions is the diagonal length of the solution volume divided by 100.0. Enter the value in units set by DUnit. In the default program mode, this command has no effect on photon orbits which generally move in large steps between discrete interactions.

Use the following guidelines to pick values of DsMax.

1. The Penelope routines usually assign small values of $D s$ for electrons moving in materials. In this case, the value of DsMax has little effect on calculations with no applied fields. For high-energy electrons incident on thin foils, set DsMax less than or equal to $1 / 10$ of the foil thickness.
2. The value of $D s$ is critical in simulations with applied magnetic fields. It must be small compared to the radius of gyration of the minimum-energy electron or positron (usually determined by EAbs). A larger value of Ds gives inaccurate or unstable orbits with poor energy conservation. Because small values of $D s$ may increase the run time, pick EAbs as large as possible in calculations with strong magnetic fields.
3. Penelope does not determine values of $D s$ in VOID regions. You must set a value for DsMax that ensures accuracy of the numerical orbit integrations if there are applied fields.
4. Check the energy conservation statistics computed by GamBet to determine whether Ds is small enough for accurate orbit calculations in applied magnetic fields. With inaccurate orbit integrations, the output energy may be higher than the input energy (global energy conservation). Section 10 discusses entries for energy conservation in the listing files.
5. By default, the maximum step size also applies to photons except when the NoStepLimit command appears in the script. Eliminating the step limit for photons saves time, but could cause invalid results when the solution volume contains a spatial region that 1) is surrounded by another region, and 2) has width comparable to or less than the photon mean-free path. Without a limit on step-size, photons may jump over the small region with sensing a boundary crossing, giving errors in the assigned dose.

STEPMAX

Depending on the settings of EAbs, C1, C2, Wcc and Wcr, the number of steps in an electron or positron history may be quite large. The parameter StepMax sets a maximum value to prevent infinite run times. The default is StepMax $=500,000$. If a particle stops early, either increase StepMax or change the values of the Penelope control parameters. The listing file contains a warning message if any particle trajectory exceed StepMax.

TIME 600

Use this command to set a maximum run time for the calculation. Enter the value in seconds. You can use this command to set a maximum time instead of a maximum number of showers. GamBet records complete information for showers calculated within the allowed time and completes the present shower before terminating. In a parallel run, the primary and all child processes will stop at the time limit.

NSEARCHWIDTH [G, E, B] NSearchWidth

GamBet uses high-speed, high-reliability methods to search meshes for particle positions. The default search width of 3 elements should be sufficient for all circumstances. Increase NSearchWidth if the program reports a mesh search error. For simple meshes, the program may run faster with a lower value. You can set individual values for searches on the geometric, electrical and magnetic meshes.

PLOTON [NPShower] [ElecP, PhotP, PosiP, ElecS, PhotS, PosiS]

In response to this command, GamBet records selected trajectories of primary and secondary particles. The trajectories may be displayed in GBView2 and GBView3. The integer quantity NPShower is the number of showers to record for each primary. The default is $N_{\text {pshower }}=1$. If you include from 1-6 optional string parameters, GamBet records only trajectories for certain types of particles: ElecP (primary electrons), PhotP (primary photons), PosiP (primary positrons), ElecS (secondary electrons), PhotS (secondary photons), PosiS (secondary
positrons). Use this command with caution: a run with a large number of primaries or with $N_{\text {pmult }} \gg 1$ can generate a huge plot file. Plotting is deactivated in parallel runs.

PARALLEL NProc [TStart TEnd]

Run multiple instances of GamBet on a multi-processor computer. The integer parameter NProc equals the total of the primary and child processes, usually equal to the maximum number allowed on the computer (e.g., for a Core i7 machine, the maximum value is 8). The integer TStart is the maximum time (in seconds) to wait for the start of each child process, and TEnd is the maximum time to wait for the conclusion. Section 11 gives a detailed description of the parallel procedure and factors that influence the choice of parameters.

NOSTEPLIMIT

The maximum step size applies to photons except when the NoStepLimit command appears. Eliminating the step limit for photons may save time, but large photon steps can lead to invalid results when the solution volume contains small regions that are immersed in another region. In this case, GamBet may fail to sense a boundary transition for steps that cross the small region but have starting and ending points in the surrounding region.

ESCAPEOFF

Suppress creation of the file of escaping particle parameters.

ESCAPEFILTER Condition01 Condition02 ...

By default, the escape file contains all particles that leave the solution volume. Filters may be applied that limit particles recorded in the escape file by species, exit position and kinetic energy. This command is useful to reduce the size of escape files by limiting data to particles of interest, thereby reducing the load time in GenDist. The nature of the filter is determined by specified conditions that follow the command. A condition is short string that does not contain any of the standard delimiters. Conditions are separated by spaces. Any number of conditions may be included in the line. The following conditions determine the included particle types (primary or secondary): ElecP, PhotP, PosiP, ElecS, PhotS and PosiS. If none of the conditions appear, all particle types are included. If one or more conditions appears, only the specified types are included. For example, this command includes only secondary electrons and photons:

ESCAPEFILTER ElecS PhotS

The following expressions define pass conditions for particles according to their exit positions: $\mathrm{X}>10.56, \mathrm{Y}<1.0 \mathrm{E}-8, \mathrm{Z}>15, \mathrm{R}>30.5, \ldots$. The expression may not include spaces or other delimiters. The condition must begin with the character X, Y, Z or R. The quantity R is given by

$$
\begin{equation*}
R=\sqrt{X^{2}+Y^{2}} . \tag{1}
\end{equation*}
$$

The next character must be either $>$ (greater than) or $<$ (less than). The remainder of the condition is a real number in any valid format. Specify the coordinate in units given by the DUnit parameter. As an example, the command

ESCAPEFILTER X>0.0 Y>0.0

passes only particles that exit in the first quadrant of the $x-y$ plane. In this case, no filtering is applied in z. Finally, conditions of the form $\mathrm{T}<5.0 \mathrm{E} 6, \mathrm{~T}<1500, \ldots$. pass particles according to their kinetic energy. Specify energy values in eV . As an example, consider a 500 keV photon beam passing through a slab of material with $z_{\max }=60.0 \mathrm{~mm}$. To calculate the attenuation coefficient, we want to find the number of full-energy, primary photons that emerge from the exit face. The appropriate filter command is:

ESCAPEFILTER PhotP T>4.999E5 Z>59.999

MCA NBins Reg01 Reg02 ... Reg10

The main use of the MCA (Multi-channel Analyzer) command is to characterize detectors. When the command is issued, GamBet opens a file RunName.PLS and records total deposited energy in selected regions for each shower. At the end of run, the program uses values in the file to create a histogram for each region showing the number of showers per range of deposited energy. The histograms are recorded in the listing file RunName. GLS. The integer parameter NBins is the number of energy intervals. The allowed range is $N_{\text {bins }}=2$ to 250 . GamBet automatically sets minimum and maximum values for the energy range. The integer parameters Reg01, Reg02,... are the numbers of any regions in the geometry mesh with non-zero volume. You can enter a maximum of 10 regions. The MCA command functions only in the SingleParticle mode. Also, the command may not be used in a run with the Parallel command.

A histogram listing is shown below. A plot of the number of showers versus energy looks like the display of a multichannel analyzer monitoring a scintillation or solid state detector.

Deposited energy distribution for Region Energy (min): 0.0000E+00		
Energy (max) : $2.1670 \mathrm{E}+06$		
dEnergy: $2.1670 \mathrm{E}+04$		
EDn (ev)	$\begin{aligned} & \text { EUp } \\ & (\mathrm{eV}) \end{aligned}$	NEvent
$0.0000 \mathrm{E}+00$	$2.1670 \mathrm{E}+04$	10996
$2.1670 \mathrm{E}+04$	$4.3340 \mathrm{E}+04$	59
$4.3340 \mathrm{E}+04$	$6.5010 \mathrm{E}+04$	62
$6.5010 \mathrm{E}+04$	$8.6680 \mathrm{E}+04$	54
$2.0803 \mathrm{E}+06$	$2.1020 \mathrm{E}+06$	2
$2.1020 \mathrm{E}+06$	$2.1237 \mathrm{E}+06$	0
$2.1237 \mathrm{E}+06$	$2.1453 \mathrm{E}+06$	4
$2.1453 \mathrm{E}+06$	$2.1670 \mathrm{E}+06$	2287

10 Running GamBet: interactive and background modes

A basic GamBet run involves the following activities:

1. Create an input script (RunName.MIN) describing the system geometry. Run the Mesh (2D) or MetaMesh (3D) program to convert the geometric specifications to a conformal mesh file.
2. Create an input script (RunName.GIN) to control the program and to define the properties of material and sources. Run GamBet to generate output files that describe spatial variations of dose, particle orbits within the solution volume and parameters of particle that escape.
3. Analyze the output files using GBView2, GBView3 or GenDist.

The section describes the second step, operation of GamBet in either the interactive or background modes.

The program gambet . exe can run interactively in a Window. In this mode you can carry out several solutions in a session or leave the program while you work in other Windows applications. The most convenient way to run GamBet, GBView2 or GBView3 is from the GBLaunch program launcher. You can also run the executable programs individually from Windows Explorer or add shortcuts to the desktop or the Windows Start Menu.

GamBet has three popup menus: File, Run and Help. The following commands appear in the File menu.

CREATE INPUT FILE

This command calls up a full-featured internal Windows editor to create an input script. Supply a run prefix (1-46 characters). The allowed commands appear as a set of comment lines. Save or abandon the file to return to the solution program.

EDIT INPUT FILE
 EDIT LISTING FILE
 EDIT FILE

These commands call the editor to inspect or to modify GamBet input and output files. Choosing a file from an alternate directory does not change the working directory. The Edit input file command shows a list of all files with names of the form FPREFIX.GIN. The Edit listing file command displays files with names FPREFIX.GLS.

The Run menu contains four commands:

START RUN

Pick an input file (FPREFIX.GIN) to start a solution. The working directory is changed if you pick a file from an alternate directory. The run begins if the geometric mesh file and all required data files are present. The small text window displays information on the run status.

PAUSE RUN

The intensive calculations of the Monte Carlo simulation demand the full resources of your computer, causing other tasks to run slowly. If you need to perform critical work, you can pause the solution program and reactivate it later without loss of data.

STOP RUN

This command terminates the program and saves information after completing the current shower.

The Help menu has the following entries:

GAMBET REFERENCE MANUAL

Open this manual in the default PDF viewer.

PENELOPE MANUAL

Open the users' manual for Penelope 2006 in the default PDF viewer.

PHYSICAL CONSTANTS

Display a useful list of physical constants in the default PDF viewer.

NIST ELECTRON DATA

Go to the NIST EStar site in the default browser to find electron cross sections and ranges.

NIST PHOTON DATA

Go to the NIST XCom site in the default browser to find photon cross sections.

FIELD PRECISION WEBSITE

Go to the Field Precision home page in the default browser to check on other products or to contact us.

To run GamBet in the background, go to the command prompt from Windows (i.e., run CMD) and log to the data directory that contains the control script (FPREFIX.GIN) and data input files. For example, suppose COPPER_FOIL.MOU and COPPER_FOIL.GIN are stored in SIMULATIONS $\backslash W O R K I N G$ and that the program gambet.exe is in the directory \backslash GAMBET. From \backslash SIMULATIONS \backslash WORKING type

```
C:GAMBET\GAMBET COPPER_FOIL <Enter>
```

The program runs silently, writing detailed information in the listing file COPPER_FOIL. GLS. If the solution is successful, the program may write COPPER_FOIL.G2D or other files to the data directory. During lengthy runs you can perform other tasks in Windows.

The main function of the command mode is autonomous operation under batch file control. This feature is useful if you want to make an extended series of solutions overnight or in the background. As an example, suppose you have prepared the input files SWT01.MIN , . . , SWT08.MIN and SWT01.GIN,...,SWT08.GIN in the directory \SIMULATIONS \backslash WORKING. Furthermore, you have written the following batch file SWRUN. BAT in the working directory using an text editor.

```
@ECHO OFF
ECHO Main switch data run
START /WAIT C:\GAMBET\MESH.EXE SWT01
START /WAIT C:\GAMBET\GAMBET.EXE SWT01
START /WAIT C:\GAMBET\MESH.EXE SWT02
START /WAIT C:\GAMBET\GAMBET.EXE SWT02
START /WAIT C:\GAMBET\MESH.EXE SWT08
START /WAIT C:\GAMBET\GAMBET.EXE SWT08
```

Note the use of /WAIT option. The mesh data must be available before the GamBet calculations. Type

SWRUN<Enter>

to generate all solutions without the need for further user input. Sometimes you can make efficient use of a multicore computer by eliminating the wait /WAIT directive and launching multiple instances of the program. In this case, you must ensure that individual processes do not try to access the same input/output files.

11 GamBet: parallel operation

GamBet run times may be significantly reduced on modern personal computers with parallel techniques. Field Precision programs are designed for Windows-based machines with multiple processors or cores - a shared-memory architecture. Accordingly, we have integrated OpenMP in our field solution programs such as HiPhi and Magnum. For these codes, the matrixinversion process that occupies the bulk of the run time is relative easy to parallelize. Threads work on separated parts of the matrix so there is no possibility of memory conflicts.

Although at first glance a Monte Carlo code would seem to be a good candidate for parallel operation, there are potential issues in GamBet:

- Primary and secondary particles update deposited dose on a single conformal mesh. With complex trajectories, it is not possible to ensure that particles from parallel showers do not occupy the same cell.
- The Penelope library was not written for parallel operation and there are potential conflicts in shared resources like the secondary stack.

For these reasons, we decided to take the distributed memory approach with GamBet. In this case, multiple instances of the program with independent storage run in individual threads controlled by the operating system. The resulting data files are combined at the end to a single representation with improved statistics. This approach is practical for current computers with large memories. Furthermore, it is easily extended to cluster computers.

The GamBet procedure is as follows:

1. In a parallel run, the executable gambet. exe (the primary process) may run either interactively or in the background. In turn, it launches multiple instances of the background program gambetmp.exe (child processes). All processes utilize the same input files (control script, geometry and field meshes,...).
2. A new command in the Process section of the input script signals that the primary process should start a parallel run:

PARALLEL NProc [TStart TEnd]

The integer parameter NProc specifies the number of threads. For a Core i7 processor, the maximum value is N Proc $=8$. Guidelines for picking NProc are discussed below. The parameter TStart is the number of seconds to wait for a signal from each child process before abandoning the launch. The parameter TEnd is the maximum number of seconds to wait for each child process to finish before combining the output data files.
3. If the primary process detects the PARALLEL command, it creates a common Penelope material input file GAMBET. MAT and then sequentially initiates (NProc-1) instances of the program gambetmp.exe. After launch, a child process reads the shared input files. The
process sends a start signal to confirm that the input files have been closed, a precaution against access conflict. The signal is the creation of a blank file. If the control script has the name FPREFIX.GIN, the start signal files have names of the form FPREFIX01.START, FPREFIX02.START,.... When the primary process detects a start signal, it notes a successful launch and proceeds to the next child process. The primary process seeks the start signal for each child process for a maximum of TStart seconds.
4. When all child processes are running, the primary process proceeds with its own calculation, issuing standard screen messages for interactive runs.
5. When the calculation is complete, the primary process checks that all valid child processes have sent an end signal (i.e., created a file with a name of the form FPREFIX01.END). The program waits a maximum of TEnd seconds for each process to finish.
6. The data of the primary process and successful child processes are combined. Start and end signals and unnecessary data files are deleted.

Although the sequence of a parallel run is involved, all operations are organized by the primary process. The user need only add the PARALLEL command. The primary process creates a text report, MPSTATUS.DAT. Check this file if there are any problems.

Data files are combined according to the following rules:

- Each process creates an escape file listing parameters of particles that escape from the solution volume (FPREFIXESC.SRC). Data lines from the child files are appended to the primary escape file. If particles have an associated current or flux, the values are divided by NProc. When complete, the child escape files are deleted. To interpret the number of entries in the combined escape file, note that the total number of showers per primary particle is NPMult \times NProc.
- Dose files describe the spatial distribution of deposited energy in the solution volume. They have names of the form FPREFIX.G2D (two-dimensional) and FPREFIX.G3D (threedimensional). Information from dose files created by the primary and child processes is accumulated, averaged and then written to the primary dose file. The child dose files are deleted.
- The listing files from the primary and child processes contain run statistics, information on deposited energy and values for particle and energy flux between regions. These quantities are accumulated, averaged and then written to the primary listing file (FPREFIX.GLS). Child listing files are deleted.
- GamBet can record sample electron, photon and positron trajectories in a file with a name of the form FPREFIX. GPL. The purposes of trajectory files are to check run physics and to create presentations. They are generally not generated in production Monte Carlo runs. A run with millions of trajectories, each with thousands of orbit vectors, could result in unmanageably large files. Therefore, trajectory plots are automatically deactivated in parallel runs. To create plots, use a serial run and limit the number of trajectories per primary particle.

Figure 8: Benchmark test: run time as function of the number of processes. Red: Total run time. Blue: Time with input/output operations subtracted.

Next, we shall consider how to pick parameters in the PARALLEL command and how much performance improvement to expect. The maximum value of NProc is 99 . The parameter should not be set higher than the maximum number of independent threads available on the computer. First consider the value of TStart. Each child process must read input files, and two processes cannot access a file at the same time. Therefore, the primary process must wait for a signal that the child process has read and closed all files. This normally requires only a few seconds, so the default TStart $=10$ seconds is sufficient. If the simulation involves a complex three-dimensional mesh or a large input SRC file, you may need to increase TStart. With regard to run completion, the child processes should be finished before the primary process if all threads have the same run time. The parameter TEnd is included for any operating-system vagaries. If the primary process does not detect the end signal from a child process, it will wait TEnd seconds before abandoning the attempt to combine files. The default is TEnd $=10$ seconds. Again, increase TEnd if there are problems reported in MPSTATUS.DAT.

To illustrate the effect of the NProc parameter, consider a benchmark example of an electron beam incident on an aluminum target. The total number of showers from all processes was fixed at $2,000,000$. The run was performed on a Core i7 machine running at 2.93 GHz . The total run time as a function of NProc is shown as the red squares in Fig.8. The serial run time was 208 seconds. Note that the total run time did not decrease above NProc $=6$, saturating at a reduction factor of 1.72 . The time required to read input files and to combine output files negated the speed increase from additional threads. A measurement showed that input/output operations occupied about 3.6 seconds/process. Subtracting this time gives the actual computation time, shown as the blue circles in Fig. 8. At NProc $=8$, the time reduction approached the theoretical value of 4.0. The implication is that the full benefits of parallel operation can be achieved when the serial run time exceeds about 5 minutes.

Some notes on parallel operation:

- The programs gambet.exe and gambetmp.exe have been modified from Version 2.0 to ensure that there is a unique random number seed for the primary process and each child process. Otherwise, each process would generate identical information that would be summed and then divided by NProc. Without a unique seed, there would be no point to a parallel run.
- To minimize problems, always make sure that a run operates correctly in the serial mode before attempting a large parallel production run. For testing, remove the PARALLEL command and use a reduced value of $N p M u l t$.
- After launch, child processes run independently of the primary process. Therefore, the Stop run command in an interactive run will only stop the primary process. You must use the Windows task manager to terminate child processes.

12 Input/output files

During a run GamBet may generate four types of output data file

LISTING FILE

In the default mode, simulations generate a listing file in text format with a name of the form RunName.GLS. The listing file contains extensive information about the run setup and also calculated statistics. The following section discusses information contained in the listing file.

DOSE FILE

All simulations generate a dose file. Depending on the symmetry of the input GFile, the dose file has a name of the form RunName.G2D or RunName.G3D. Files of type RunName.G2D are analyzed with GBView2 and files of type RunName.G3D with GBView3. The dose file contains the following information: parameters of the geometric mesh, region identities of nodes and elements, node coordinates, total dose in elements and dose contributions from primary and secondary electrons, photons and positrons and region properties. The units of recorded dose depend on the simulation mode. The TriComp program TDiff can import files of the type RunName. G2D to perform thermal analyses. In this case, the recorded element quantities must be dose rates; therefore, the calculation must be performed in the continuous beam mode (Chap. 3). Here, the current or flux information should be specified for the primary particles and TPulse must be undefined. A temporal function may be specified in TDiff to modulate the energy deposition rate. Similarly, files of the type RunName. G3D may exported to the AMaze program HeatWave.

ESCAPE FILE

In the absence of the ESCAPEOFF command, a simulation generates an escape file. This file lists properties of particles that terminate by leaving the material boundaries of the solution region. The file has a name of the form RunNameECS.SRC and the same format as the source file described in Sect.8.1. Therefore, an escape file can be used as the input file for a subsequent GamBet run or analyzed with the GenDist program. An escape event occurs when either 1) the particle moves outside the bounds of the geometric mesh, 2) enters a element with RegNo $=0$ or 3) enters a region with the Exclude property (Sect. 7). The following quantities are included in comment lines at the beginning of the escape file:

DUNIT

Conversion factor to convert particle coordinates to meters.

NPRIMARY

Number of primary particles in the input list of the GamBet run.

NSHOWER

Number of showers created in the GamBet run, where $N_{\text {shower }}=N_{\text {pmult }} \times N_{\text {primary }}$.

Table 6: Interpretation of flux in the GamBet escape file

Particle type	Mesh symmetry	textbfCurrent/flux quantity
Electron/positron	3D, 2D cylindrical	A
	2D planar	A/m
	3D, 2D cylindrical	photon/s
	2D planar	photon $/ \mathrm{m} / \mathrm{s}$

Each data line in the file represents a simulation particle and contains the following entries:
Particle type (E,P or E+)
Kinetic energy (eV)
Coordinates x, y and z (units defined by DUnit)
Direction unit vector components u_{x}, u_{y} and u_{z}
Current/flux
The interpretation of the current/flux quantity depends on the geometric mesh symmetry and particle type (see Table 6).

TRAJECTORY PLOT FILE

A shower trajectory file is created when the PlotOn command appears in the script. The file has a name of the form RunName. GPL. The header contains the quantities DUnit and NShower. The file contains trajectories of all primary and secondary particles in one or more showers. Each particle orbit starts with the heading:

```
<======================================
ShowerNo: 667
PrimaryNo: 4
PartType: [Electron, Photon, Positron]
    x y z NReg
```

and contains a number of data lines of the form

$$
x, y, z, N R e g
$$

where the coordinates are given in units specified by DUnit. The line

$$
-1.0000 \mathrm{E}+00-1.0000 \mathrm{E}+00-1.0000 \mathrm{E}+000
$$

signifies the end of an orbit. Trajectories may be superimposed on dose plots in GBView2 and GBView3. The file is in text format. The content may be inspected with an editor or ported to your own analysis programs.

DEPOSITED ENERGY DISTRIBUTION FILE

The format of the file RunName.PLS is shown below. Values for the first region are listed in column 1, the second region in column2 and so forth. As an alternative to the historgram in the listing file, you can use the data directly in your own statistical analysis routines. There are six lines in the heading. The quantity NLines is the number of data lines, equal to the number of showers (NPMult). The unit (eV/p) denotes electron-volts per primary particle. Each data line contains from 1 to 10 entries, one for each region specified in the MCA command. The values are the deposited energy in each region for each shower.

GamBet Pulse-height Distribution File (Field Precision)
RunName: NaIDetect2
NLines: 20000
Regions: 36
Units: eV/p

$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$8.2165 \mathrm{E}+05$	$1.3454 \mathrm{E}+06$
$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$	$7.7453 \mathrm{E}+05$
$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

13 Contents of the listing file

All Field Precision programs generate listing files that report on the progress of the run. The GamBet file RunName. GLS records run parameters and contains important results of the calculations.

13.1 Source information

After analyzing the commands of the Source section, GamBet lists the properties of the primary particle distribution. If the particle lists contain current or flux information, the reported averages are weighted by these quantities.

```
Input distribution properties
    Number of primary particles: 1
    Shower calculations per primary: 50000
    Total number of shower calculations: 50000
    Input energy: 1.0000E+06 (eV/m)
    Electron properties
        Total number: 1.00
        Average energy: 1.0000E+06 (eV)
        Average position
            X: 1.0000E-04 (cm)
            Y: 0.0000E+00 (cm)
            Z: 0.0000E+00 (cm)
        Average direction unit vector
            U: 1.0000
            V: 0.0000
            W: 0.0000
```


13.2 Penelope setup information

After reading commands of the Process section, GamBet lists quantities generated by Penelope while building material tables and region properties.

```
Penelope setup
    Specified control parameters
    (Random number seeds: 12345 54321)
MatNo EAbs(Elec) EAbs(Phot) EAbs(Posi) C1
                            (eV) (eV) (eV)
    1 1.0000E+05 1.0000E+05 1.0000E+05 1.0000E-01
        C2 WCC WCR
                        (eV) (eV)
                        1.0000E-01 1.0000E+05 1.0000E+05
Set up material tables
        Energy range, EMin: 1.0000E+05 (eV) EMax: 1.0000E+06 (eV)
Processing Material No.: 1
    Electron absorption energy: 1.0000E+05 (eV)
    Photon absorption energy: 1.0000E+05 (eV)
    Positron absorption energy: 1.0000E+05 (eV)
    C1: 1.0000E-01, C2: 1.0000E-01 WCC: 1.0000E+05 (eV) WCR: 1.0000E+05 (eV
Mass density: 1.9320E+01 (g/cm3)
Number of elements in the molecule: 1
Element: Au (Z=79), atoms/molecule = 1.00000000E+00
Mean excitation energy = 7.9000E+02 eV
Maximum step sizes for electrons and positrons
    NReg DsMax
--------------------------
        1 5.0000E-02 (cm)
Integrated region masses
    NReg Mass (kg/m)
            1 5.7959E-01
```


13.3 Primary particle statistics

When the Monte Carlo calculation is complete, GamBet lists several categories of statistic information. The primary particle list has the format shown below. Note that escape particles are those primaries that leave the solution volume while absorbed particles stop inside the solution volume. Units depend on the simulation mode.

```
Primary electrons
    Escape fraction: 0.4417
    Average energy of escape electrons: 7.2260E+05 (eV)
    Average pathlength of escape electrons: 1.3666E-02 (cm)
```

```
Average pathlength of absorbed electrons: 3.8120E-02 (cm)
Number of secondary electrons per primary: 0.290
Average secondary electron energy: 1.8428E+05 (eV)
Average energy lost to secondary electrons per primary: 5.3519E+04 (eV)
Number of secondary photons per primary: 0.141
Average secondary photon energy: 2.5054E+05 (eV)
Average energy lost to photons per primary: 3.5326E+04 (eV)
Number of secondary positrons per primary: 0.000
Average energy lost to positrons per primary: 0.0000E+00 (eV)
```


13.4 Energy conservation

Energy conservation statistics compare the input energy to total deposited and escape energies. In the absence of an applied electric field, the quantity Energy difference should be small ($\ll 1 \%$). Anomalous energy differences may appear under two circumstances:

- With chosen Penelope parameters, the value of StepMax may be too small. In this case, particle histories are not followed to completion.
- The step size $D s$ is too large for accurate numerical integrations in the presence of electric or magnetic fields.

To compute energy conservation, GamBet compares the total input particle kinetic energy to the sum of the escape energy and the energy deposited in the medium. NOTE: The energy difference may not be a small number if particles can gain significant energy within the simulation volume from applied electric fields.

```
Energy conservation
    Input energy: 1.0000E+06 (eV/m)
    Energy deposited by primaries: 6.0399E+05 (eV/m)
    Energy deposited by secondaries: 6.0372E+04 (eV/m)
    Primary escape energy: 3.1917E+05 (eV/m)
    Secondary escape energy: 1.6206E+04 (eV/m)
    Energy difference: 2.6031E-02%
    Energy deposited by electrons: 6.5512E+05 (eV/m)
    Electron escape energy: 3.2095E+05 (eV/m)
    Energy deposited by photons: 9.1827E+03 (eV/m)
    Photon escape energy: 1.4430E+04 (eV/m)
    Energy deposited by positrons: 0.0000E+00 (eV/m)
    Positron escape energy: 0.0000E+00 (eV/m)
```


13.5 Dose assignment statistics

As a check GamBet prints a sum of energy deposited on the finite-element mesh. The quantities should equal the sum of primary and secondary deposited energy.

```
Energy/Power deposited on the mesh
    Global energy
        Primary electrons: 3.3241E+04 (eV)
        Primary photons: 0.0000E+00 (eV)
        Primary positrons: 0.0000E+00 (eV)
```

```
    Secondary electrons: 2.6175E+03 (eV)
    Secondary photons: 8.8804E-02 (eV)
    Secondary positrons: 0.0000E+00 (eV)
    All particles: 3.5858E+04 (eV)
Region energy (eV)
NReg Prim elect Prim phot Prim posit ...
=========================================
    1 3.3241E+04 0.0000E+00 0.0000E+00
    Sec elect Sec phot Sec posit Total
    ===================================================
    2.6175E+03 8.8804E-02 0.0000E+00 3.5858E+04
```


13.6 Particle flux statistics

Finally, GamBet makes a list of particle flux between regions. In the example listed below the solution volume contains a single region (numbered 1). Region number 0 represents any exterior volume. Therefore, the quantities shown below represent electrons and photons escaping from the solution volume. NOTE: In the example the electron flux value of 0.4998 is higher than the primary escape fraction of 0.4417 because of the expulsion of secondary electrons. In a solution with multiple regions, GamBet lists results for all boundaries that have non-zero flux.

14 GBView2

GBView2 is an interactive graphical post-processor for analysis of output files generated by two-dimensional GamBet runs. The run has two-dimensional symmetry if the command GFile2D was used to load a conformal triangular mesh with planar or cylindrical symmetry. In this case, GamBet creates an output file with a name of the form RunName. G2D with dose deposited in the triangular elements.

GBView2 automatically sets appropriate units for planar or cylindrical symmetry with the following conventions:

- In a planar simulations there is no variation in the z direction. Primary particles represent a planar beam with input current in A / m and flux in photons $/ \mathrm{s} / \mathrm{m}$. Dose is deposited uniformly along z (i.e., the z coordinates of individual particle orbits are ignored).
- In a cylindrical simulation there is no variation in the θ direction. Primary particles represent an annular distribution of radius $r=\sqrt{x^{2}+y^{2}}$ with input current in A and flux in photons/s. Dose is deposited uniformly in θ at the r and z coordinates of particles, independent of the relative values of x and y.

14.1 File menu

LOAD DOSE FILE

Load a file with a name of the form RunName.G2D containing information on deposited dose in the elements of the geometric mesh.

LOAD TRAJECTORY FILE

This command is active if a dose file has been loaded. When a trajectory file is loaded, you can superimpose plots of primary and secondary particle orbits. Trajectory files have names of the form RunName. GPL and are created if the PlotOn command appears in the script.

CLOSE TRAJECTORY FILE

Close the file and remove particle orbits from plot.

OPEN DATA LISTING FILE

You can save the results of dose calculations performed in GBView2 in a text file. Supply a file prefix FPrefix in the dialog. The output file has a name of the form FPrefix.DAT.

CLOSE DATA LISTING FILE

Terminate input to the data file. The file should be closed before opening another file or editing the present file with another Windows program.

RUN SCRIPT

With scripts you can automatically perform complex or repetitive calculations on a set of similar solutions. This command displays a dialog with a list of script files that you have created with the suffix SCR. Pick a file and click OK. The script file can load data files, open and close history files, and perform any of the quantitative analysis functions. Note that the script file should be in the same directory as the data files. Section 14 describes script commands.

CREATE SCRIPT

This command allows you to create script files using the internal editor of the post-processor. A dialog box requests a file prefix. The resulting script file will be saved as FPREFIX.SCR. Next, the program opens the file in the editor and writes a list of allowed commands for reference. This list follows the EndFile command and will be ignored by GBView2 or GBView3. Enter analysis commands above the EndFile command. After saving the file, you can run it using the Run script command.

EDIT SCRIPT

Use this command to change an existing script file. The dialog lists files in the current directory with the subscript SCR. Changing directories does not change the working directory of the program.

EDIT DATA FILE

Use this command to view or to modify files with names of the form FPREFIX.DAT.

EDIT FILE

Use this command to view or to modify any text file.

14.2 Spatial plots menu

PLOT TYPE

The postprocessors can create a variety of colored screen and hardcopy plots.
Mesh: outline of the elements in the computational mesh.
Region: computational mesh with elements color-coded by region number.
Contour: lines that follow constant values of dose.
Element: elements of the solution space color-coded according to dose. You can activate or deactivate element boundaries with the Toggle element outline command.

Surface: a three-dimensional plot where height is proportional to dose over a region in the $x-y$ or $z-r$ plane. The spatial limits of the plot correspond to the current view window for Mesh, Region, Contour, or Element plots.

PLOTTED QUANTITY

There are eight plot quantities: the total dose, the total energy and dose contributions from primary and secondary electrons, photons and positrons.

PLOT LIMITS

In the default autoscale mode GBView2 picks limits in Contour, Element and Surface plots that span the full range of dose. With this command you can set manual limits. In the dialog uncheck the Autoscale box and fill in minimum and maximum values.

TOGGLE GRID

A set of dashed grid lines in $x-y$ or $z-r$ may be superimposed on Mesh, Region, Contour and Element plots. GBView2 automatically chooses intervals and positions so that lines occur at convenient values of x or y (for example, 0.01 rather than 0.01153). Grids corresponding to the axes $(x=0.0$ or $y=0.0)$ are plotted as solid lines.

SET CONTOUR PLOT STYLE

This command is active only when the current plot type is Contour. There are four choices: monochrome, monochrome with labels, colored and colored with labels. In the colored mode, the lines are color-coded according to the value of the plotted quantity. A legend is included in the information window to the right of the plot. In the labeled modes, contour lines are numbered according to their values. Overlapping labels on closely-spaced lines may look better in a zoomed view.

TOGGLE ELEMENT OUTLINE

This command determines whether the element boundaries are included in Region and Element plots. It may be necessary to deactivate outlines to view large meshes.

TOGGLE MOUSE/KEYBOARD

By default the program uses interactive mouse entry of coordinates for commands like Line scan and Zoom. This command switches the program between mouse and keyboard input. Enter keyboard coordinates in the distance units defined by DUnit. In other words, if the solution program has $D U$ nit $=1.0 \times 10^{6}$, enter dimensions in microns.

TOGGLE SNAP MODE

The mouse snap mode is a convenient feature of GBView2. When snap mode is active, the mouse returns the coordinate values closest to an integer multiple of the quantity DSnap. In other words, if D Snap $=0.5$ and the mouse position is [5.4331,-2.6253], the returned coordinates are [5.5,-2.5]. By default, snap mode is ON. Snap mode is automatically turned off for coordinate input to the commands Point calculation and Element properties. Otherwise, the program could pick a location closest to the snap point rather than the point at the tip of the mouse arrow, giving misleading information.

SET DSNAP

Set the distance scale for the mouse snap mode.
The following commands change the view limits in Mesh, Region, Contour and Element plots. The current view limits of the two-dimensional plots are used when creating threedimensional surface plots.

ZOOM WINDOW

You can zoom in on any area of the plot by specifying the two corners of a view box with the mouse. The coordinates are displayed in the window below the plot. The returned coordinate values depend on whether snap mode is active. You can also enter view coordinates from the keyboard by issuing the Toggle mouse/keyboard command.

ZOOM IN

Magnifies the view about the center of the current plot.

EXPAND VIEW

Expands the view area about the center of the current plot.

GLOBAL VIEW

Returns the plot boundaries to the full solution area.

PAN

Moves the center of the plot. Enter two points to define a displacement vector.
The following commands control the appearance of surface plots. The commands are active only when a surface plot is displayed. You may notice that there is a delay if you choose the Surface option in the plot type command or if you change the plotted quantity when a Surface plot is active. To create the plot, GBView2 must map the current quantity to a rectangular grid, performing a large number of iterpolations.

ROTATE 3D IMAGE

Rotate the Surface plot 90° in the spatial plane.

VIEW ANGLE 3D

Change the angle of view for the Surface plot.

SET GRID 3D

To create the plot, the dose is mapped to a rectangular grid with dimensions N_{x}, N_{y}. These numbers also determine the total number of grid lines in the Surface plot. The default values are $N_{x}=N_{y}=75$. You can change values with this command. Although higher numbers give
plots with more detail, the regeneration time is longer and the screen display may be unattractive.

The next set of commands is used to send the current plot to a printer or file.

DEFAULT PRINTER

Spatial and scan plots may be ported to any installed Windows printer (including network printers, postscript drivers,...). In response to the command, the current screen plot is sent to the default Windows printer. If necessary, change the default printer using the Settings command of Windows before running GBView2.

SAVE PLOT FILE

Use this command to create a graphics file of the current plot in either Windows Bitmap (BMP) or Portable Network Graphics (PNG) formats. In the dialog, specify the format, the size in pixels and the file prefix. The graphics file is created in the current directory.

COPY TO CLIPBOARD

Copy the current plot to the clipboard in Windows MetaFile format. The plot can then be pasted into a compatible graphics program.

14.3 Dose analysis menu

The commands in the Dose Analysis menu generate numerical data. Most of the functions require coordinate input from the user, usually through the mouse. Therefore, the analysis menu is active only when a Mesh, Region, Contour or Element plot is displayed.

POINT CALCULATION

To find the dose in an element, click on the command and then point to any position. Note that snap mode is turned OFF for coordinate input. GBView2 displays dose values for the element that contains the point amd also records information if a data file is open. To enter point coordinates by keyboard, use the Toggle mouse/keyboard command.

LINE SCAN

The line scan is one of the most useful functions of GBView2. After clicking on the command, supply two points by left-clicking the mouse in a view of a Mesh, Region, Contour or Element plot to define a scan line. The snap mode is useful in this application (for example, you may want a scan to extend from 0.000 to 5.000 rather than 0.067 to 4.985 .) The program determines a series of dose values in elements at equal intervals along the line. The information is recorded if a history file is open. The program also makes a screen plot of the currently-selected quantity versus distance along the scan and activates the commands in the Scan plot menu. GBView2 adds fiducial lines to the plot using intelligent grid selection. This means that the plot is adjusted to fill the screen and grids are drawn at useful intervals (like 0.05 or 2.00).

SCAN PLOT QUANTITY

There are seven plot quantities: the total dose and dose contributions from primary and secondary electrons, photons and positrons.

SET NUMBER OF SCAN POINTS

This command sets the number of line scan points used for the screen plot and recorded in the history file. The default value is 50 and the maximum number is 500 .

ELEMENT PROPERTIES

Pick a triangular element with the mouse (or keyboard) and the post-processor writes material and dose properties of the element to the screen.

REGION PROPERTIES

To see physical properties associated with a region of the solution space, click the mouse close to any arc or line vector of the region. Partial results are shown on the screen and a complete analysis is included in the data file.

VOLUME INTEGRALS

No input is needed for this command. GBView2 automatically computes integrals of quantities over the full solution volume and over individual regions. Information is recorded on the screen or in a history file.

MATRIX FILE

This command is useful if you want to write your own analysis routines or port results to mathematical software. In response to the command, GBView2 performs interpolations over a specified box region on a regular grid of values. It is much easier to use results in this form than to deal with the conformal triangular mesh directly. Clicking on Matrix file calls up a dialog. Specify the dimensions of the box along the axes (in units set by DUnit) and the number of calculation intervals. To illustrate, calculations are performed at positions X_{n} with coordinates given by

$$
X_{n}=X_{\min }+n\left(X_{\max }-X_{\min }\right) / N_{x},
$$

where $n=0,1,2, \ldots, N_{x}$. You can also specify an output file prefix. The text file is created in the format shown below with suffix MTX. Units of dose depend on the mode of the GamBet simulation.

Matrix of values from data file Ion_Chamber.G2D				
ZMin:	$0.000 \mathrm{E}+00$	RMin:	$0.000 \mathrm{E}+00$	
ZMax:	$1.000 \mathrm{E}+01$	RMax:	$5.000 \mathrm{E}+00$	
NZ: 10	NR:	10		
Z		R	NReg	Dose (Gy)
$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	1	$4.409377 \mathrm{E}+06$	
$1.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	1	$4.143115 \mathrm{E}+06$	
$2.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	1	$3.733472 \mathrm{E}+06$	
$3.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	1	$1.859380 \mathrm{E}+06$	
$4.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	1	$1.215571 \mathrm{E}+06$	
$5.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	1	$6.421903 \mathrm{E}+05$	

SMOOTH DOSE

Statistical noise is invariably associated with Monte Carlo calculations. The interactive plotting and calculation functions of GBView2 make it easy to visualize and to quantify statistical variations of dose. These variations may be significant in solutions where the mesh has a large number of small elements. With this command you can apply averaging to reduce variations between elements at the expense of some loss of spatial resolution. The following procedure is used. The program cycles through NSmoothParam cycles. In each cycle, the element dose is set equal to 0.75 times the previous dose plus 0.25 times a volume-weighted average of the doses in the three adjacent elements. You can apply this command several times to achieve the desired level of smoothing. If smoothing becomes excessive, reload the original file.

SMOOTH PARAMETER

Set the value of NSmoothParam. Larger values give stronger smoothing. The default value is 10.

SAVE DOSE FILE

You can save a smoothed distribution in a standard two dimensional dose file. Supply a file prefix FPrefix. Be sure to use a different prefix if you want to preserve the original data. The file is saved in the current directory under the name FPrefix.G2D.

14.4 Scan plot menu

The commands of the Scan plot menu become active when a plot is created following the line scan command.

OSCILLOSCOPE MODE

In the oscilloscope mode, a scan plot assumes characteristics of a digital oscilloscope. The program superimposes a cross-hair pattern on the graph. Plot values at the intersection are displayed in the information window. Move the marker along the plot by moving the mouse. If you click the left mouse button at a point, the program displays the plot values along with the
numerical derivative and integral of the curve. The definite integral is taken from the left-hand side of the plot to the current point. Values are displayed on the screen and written to the data file if open. Press the right mouse button to exit the oscilloscope mode.

TOGGLE SCAN SYMBOLS

The setting determines whether symbols are added to the scan plot to show calculated points.

TOGGLE GRID

The setting determines whether grid lines are added to the screen and hardcopy scan plots.

CLOSE SCAN PLOT

The scan plot must be closed before you can continue to use the File and Analysis functions of GBView2. This command closes the scan plot and returns the program to the previous spatial plot.

15 GBView3

GBView3 is an interactive graphical post-processor for analysis of output files generated by three-dimensional GamBet runs. The run has three-dimensional symmetry if the command GFile3D was used to load a conformal hexahedron mesh. in this case, GamBet creates on output file with a name of the form RunName.G3D with dose deposited in the hexahedron elements.

15.1 File menu

GBView3 has the following popup menus: File operations, Analysis, Plane plots, Slice plots, Surface plots and Help. When the program starts, only the File and Help menus are active. You must load a data file in order to create plots or to perform analyses. We shall first review options in the File menu.

LOAD DOSE FILE

In response to the command, the program displays a dialog with a list of files with names of the form FPREFIX.G3D. Changing the directory in the dialog changes the program working directory. Pick an available file and click $O K$. The program loads the solution and updates the status bar. If data retrieval is successful, the analysis and plot menus become active.

DOSE FILE INFORMATION

Display a dialog with information on the currently-loaded dose file.

LOAD TRAJECTORY FILE

This command if active when a dose file is active. When a trajectory file is loaded, you can superimpose plots of primary and secondary particle orbits. Trajectory files have names of the form RunName.GPL and are created if the PLOTON command appears in the script.

CLOSE TRAJECTORY FILE

Close the file and remove particle orbits from plot.

OPEN DATA LISTING FILE

You can save the results of dose calculations performed in GBView3 in a text file. Supply a file prefix FPrefix in the dialog. The output file has a name of the form FPrefix.DAT.

CLOSE DATA LISTING FILE

Terminate input to the data file. The file should be closed before opening another file or editing the present file with another Windows program.

RUN SCRIPT

With scripts you can automatically perform complex or repetitive calculations on a set of similar solutions. This command displays a dialog with a list of script files that you have created with the suffix SCR. Pick a file and click $O K$. The script file can load data files, open and close history files, and perform any of the quantitative analysis functions described in this manual. Note that the script file should be in the same directory as the data files. Section 14 describes script commands.

CREATE SCRIPT

This command allows you to create scripts using the internal editor of the post-processor. A dialog box requests a file prefix. The resulting script will be saved as FPREFIX.SCR. Next, the program opens the file in the editor and writes a list of allowed commands for reference. This list follows the EndFile command and will be ignored by GBView2 or GBView3. Enter analysis commands above the EndFile command. After saving the file, you can run it using the Run script command.

EDIT SCRIPT

Use this command to change an existing script. The dialog lists files in the current directory with the subscript SCR. Changing directories does not change the working directory of the program.

EDIT DATA FILE

Use this command to view or to modify files with names of the form FPREFIX.DAT.

EDIT FILE

Use this command to view or to modify any text file.

15.2 Dose analysis menu

The commands in the Dose analysis menu generate numerical data. Some functions operate only if a data listing file has been opened.

POINT CALCULATION

To find the dose at a position, supply (x, y, z) coordinates in the dialog in units set by DUnit in the GamBet run. GBView3 displays writes dose values for the element that contains the point amd also records information if a data file is open.

LINE SCAN

In response to this command, GBView3 calculates a series of dose values along a specified line. Supply (x, y, z) coordinates of the start and end points. The information is recorded if a history file is open. The program also makes a screen plot of the currently-selected quantity versus distance along the scan and activates the commands in the Scan plot menu. GBView3 adds
fiducial lines to the plot using intelligent grid selection. This means that the plot is adjusted to fill the screen and grids are drawn at useful intervals (like 0.05 or 2.00).

SCAN PLOT QUANTITY

There are seven plot quantities: the total dose, the total energy and dose contributions from primary and secondary electrons, photons and positrons.

SET NUMBER OF SCAN POINTS

This command sets the number of line scan points used for the screen plot and recorded in the history file. The default value is 50 and the maximum number is 500 .

REGION PROPERTIES

To see physical properties associated with a region of the solution space, supply the region number in the dialog. Partial results are shown on the screen and a complete analysis is included in the data file.

VOLUME INTEGRALS

No input is needed for this command. GBView3 automatically computes integrals of dose over the full solution volume and over individual regions. Information is recorded on the screen or in a history file.

CREATE MATRIX FILE

This command is useful if you want to write your own analysis routines or port results to mathematical software. In response to the command, GBView3 performs interpolations over a specified box region on a regular grid of values. It is much easier to use results in this form than to deal with the conformal hexahedron mesh directly. Clicking on Create matrix file calls up a dialog. Specify the dimensions of the box along each axis (in units set by DUnit) and the number of calculation intervals. To illustrate, calculations are performed at positions X_{n} with coordinates given by

$$
X_{n}=X_{\min }+n\left(X_{\max }-X_{\min }\right) / N_{x}
$$

where $n=0,1,2, \ldots, N_{x}$. You can also specify an output file prefix. The text file is created in the format shown below. Units of dose depend on the mode of the GamBet simulation.

```
GBView3 matrix file: OutMatrix.MTX
    XMin: -7.50000E+00 XMax: 7.50000E+00 NX: 10
    YMin: -7.50000E+00 YMax: 7.50000E+00 NY: 10
    ZMin: 0.00000E+00 ZMax: 1.50000E+01 NZ: 10
        X Y Z Energy Density NReg
\begin{tabular}{llllll}
\(-7.50000 \mathrm{E}+00\) & \(-7.50000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(5.93616 \mathrm{E}+04\) & \(1.00000 \mathrm{E}+00\) & 1 \\
\(-6.00000 \mathrm{E}+00\) & \(-7.50000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(5.93616 \mathrm{E}+04\) & \(1.00000 \mathrm{E}+00\) & 1 \\
\(-4.50000 \mathrm{E}+00\) & \(-7.50000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(5.93616 \mathrm{E}+04\) & \(1.00000 \mathrm{E}+00\) & 1 \\
\(-3.00000 \mathrm{E}+00\) & \(-7.50000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(5.93616 \mathrm{E}+04\) & \(1.00000 \mathrm{E}+00\) & 1 \\
\(-1.50000 \mathrm{E}+00\) & \(-7.50000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(5.93616 \mathrm{E}+04\) & \(1.00000 \mathrm{E}+00\) & 1
\end{tabular}
```


SMOOTH DOSE

This command has the same function of the Smooth dose command in GBView2. You can apply the command several times to achieve the desired level of smoothing. If smoothing becomes excessive, reload the original file.

SMOOTH PARAMETER

Set the value of NSmoothParam. Larger values give stronger smoothing. The default value is 5 .

SAVE DOSE FILE

You can save a smoothed distribution in a standard three-dimensional dose file. Supply a file prefix FPrefix. Be sure to use a different prefix if you want to preserve the original data. The file is saved in the current directory under the name FPrefix.G3D.

15.3 Plane plots

Plane plots are two-dimensional plots that show the variation of dose over a plane normal to one of the Cartesian axes. Plane plots provide simple and quick views of the solution space. The technique is to generate a set of values on a rectangular mesh over a specified planar region and then to create plots in a variety of styles. No attempt is made to connect the plot mesh with the conformal mesh of the simulation. Slice plots are also two-dimensional in a plane normal to a Cartesian axis. The difference is that slice plots are built using the computational mesh. They show precise region boundaries and contour lines in true scale. Plot options are more limited because slice plots are more difficult to construct than plane plots.

SET PLANE

This command brings up a dialog to set the plane for the plot. Set the normal axis with the radio buttons at the top. For example, for a choice of z the plot will be created in the $x-y$ plane. You can use the slider bar to set the position along the normal axis or type a value in the box. The range of the slider bar is automatically set to the limits of the solution volume along
the normal axis. The boxes at the bottom determine the plot range in the normal plane. The default settings are the limits of the solution volume. Note that plane plots are constructed to fill the maximum screen area. They do not preserve scaling in the normal plane.

The following commands are in the PLOT CONTROL popup menu:

PLOT STYLE

The command brings up a dialog to set the plot style. The numbers at the bottom give the resolution of the mesh used to create the plot. Higher values give more detail but require longer regenerate times. The default is a 75×75 mesh.

PLOT QUANTITY

The single allowed quantity is the total dose.

PLOT LIMITS

Set limits for the plotted quantity. When Autoscale is active, GBView3 automatically sets limits based on the range of values in the solution file.

ROTATE PLOT

This command is active only for the Filled contours 3D and Gradient plot 3D plot styles. You can rotate the plot in 90 degree increments for the best view.

The commands of the EXPORT PLOT menu are used to generate hardcopy or to create plot files.

DEFAULT PRINTER

Use this command to send the current plot to any installed Windows printer (including network printers, postscript drivers, PDF drivers...). Note that the destination is the default Windows printer. If necessary, change the default using the Settings command of Windows before issuing the command.

SAVE PLOT FILE

Use this command to create a graphics file of the current plot in either Windows Bitmap (BMP) or Portable Network Graphics (PNG) formats. In the dialog, specify the format, the size in pixels and the file prefix. The graphics file is created in the current directory.

COPY TO CLIPBOARD

The current plot is copied to the clipboard in Windows Metafile format. You can then paste the image into graphics software.

15.4 Slice plots

Slice plots are two-dimensional plots that show the variation of quantities over a plane normal to one of the Cartesian axes. In contrast to plane plots, slice plots are based on the structure of the mesh projected to a slice plane. This structure may be quite complex for a conformal mesh; therefore, slice plots require more computational effort. To facilitate the process, slices are at discrete locations along the normal axis corresponding roughly to the planes of the MetaMesh foundation mesh. The precise rendering of spatial information allow point-and-click analysis operations (point calculation, line scan, ...) in the slice.

The Change view popup menu contains commands to set the slice plane and to adjust the dimensions of the plot.

SET SLICE PLANE PROPERTIES

This command calls up the same dialog as the Set plane command in the Plane plot menu. You can change the normal axis, change the position along the normal axis, and set plot limits in the normal plane.

SLICE NORMAL TO X
 SLICE NORMAL TO Y SLICE NORMAL TO Z

Quick commands to change the normal axis.

JUMP FORWARD
 STEP FORWARD
 STEP BACKWARD
 JUMP BACKWARD

Move along the slice axis by small or large steps. The small step is approximately one layer of the foundation mesh and the large step is 5 layers. The term forward implies motion toward higher indices of the normal axis. The slider bar in the orientation area to the right of the plot shows the current location.

ZOOM WINDOW

As an alternative to the entries in the Set slice plane dialog, you can interactively change plot limits in the normal plane using the mouse. Choose the command and move the mouse pointer into the plot area. The status bar enters coordinate mode. It shows the current mouse position in the plot and the snap mode. Use the left button to pick one corner and then move the mouse to create a view box. Click the left button again, and the plot regenerates. On any coordinate operation, press the F1 key if want to enter values from the keyboard. Note that the normal plane box in the orientation area to the right of the plot shows the dimensions of the slice plane and the outline of the current zoomed view.

ZOOM IN

Enlarge the plot about the current view center.

EXPAND VIEW

Expand the plot about the current view center.

GLOBAL VIEW

Enlarge the plot boundaries to show the entire normal plane.

PAN

When the plot is zoomed, you can use this operation to shift the current view center. Use the mouse to define a relative starting and ending point for the shift.

The commands in the Plot control popup menu are used to set the plot style and mouse options.

SET SLICE PLOT STYLE

This command brings up the dialog to choose the plot style. The Region plot style is a crosssection view of the mesh element divisions color-coded by region. In contrast to the logical plane plot of MetaMesh, GBView3 attempts to resolve the exact mesh structure in the plane. The Contour plot style shows lines of constant dose, and Element plot shows element cross-sections color-coded by dose. The plot option Region shading applies to contour plots. When active, GBView3 adds light background colors to show the boundaries between different material regions. The Element outline option applies to element plots. When active, GBView3 adds the boundaries of elements. The check boxes on the right-hand side control the data included in plots. The Electron, Photon and Positron options are active only if a trajectory plot has been loaded.

PLOT LIMITS

In the autoscale mode, GBView3 chooses defaults for the minimum and maximum potential values of dose. Deactivate autoscale to set the values manually.

NUMBER OF CONTOUR LINES

Change the number of lines for contour plots.

TOGGLE SNAP MODE

Mouse coordinates for commands such as Zoom window, Pan, and Scan in slice can be entered in two modes. In the normal mode, the returned position corresponds to the mouse position on the screen. In the snap mode, the program picks a point at an even interval close to the mouse position. The returned point depends on the value of the parameter DSnap. For example if DSnap $=0.1$ and the mouse is at position (6.2345,-5.6113), the returned position is (6.2000,-5.6000). The status bar displays the actual or snapped position of the mouse.

SET SNAP DISTANCE

Change the value of DSnap from the default value determined by the program.

TOGGLE GRID

A set of dashed grid lines can be superimposed on slice plots. GBView3 automatically chooses intervals and positions so that the lines occur at convenient values along the horizontal and vertical directions (for example, 0.01 rather than 0.01153). Listings of the grid intervals are included in the axis labels. Grids corresponding to the normal plane axes are plotted as solid lines.

15.5 Analysis in a slice

You can determine dose values at points and along scan lines within the slice using the commands of the Analysis popup menu. Results are recorded if a data file is open.

POINT CALCULATION

This command is useful to make quick checks of dose values in the solution volume. After you click the Point calculation command, move the mouse into the plot area. The mouse pointer changes to a cross-hair pattern and the status bar enters coordinate mode. Click the left button to specify a point or press the F1 key to enter the coordinates from the keyboard. Note that mouse coordinates will shift between discrete values if snap mode is active. GBView3 calculates dose values at the point in the normal plane given by the coordinates.

LINE SCAN

The line scan is one of the most useful GBView3 capabilities. After clicking on the command, supply two points with the mouse to define a scan line (or press the F1 key to enter coordinates manually). The snap mode is useful in this application (for example, you may want the scan to extend from 0.000 to 5.000 rather than 0.067 to 4.985 .) The program computes a series of values of field quantities in the normal plane at equal intervals along the line. Complete information is recorded if a data file is open. The program also makes a screen plot of the currently-selected quantity versus distance along the scan and activates the Scan plot menu. GBView3 adds fiducial lines to the plot using intelligent grid selection. This means that the plot is adjusted to fill the screen and grids are drawn at useful intervals (like 0.05 or 2.00).

SET SCAN QUANTITY

There are seven plot quantities: the total dose and dose contributions from primary and secondary electrons, photons and positrons.

SET NUMBER OF SCAN POINTS

This command sets the number of line scan points in the screen plot and data file listing. The default value is 50 and the maximum number is 250 .

In addition to the standard Export plot options, the Scan plot menu contains the following command:

OSCILLOSCOPE MODE

In oscilloscope mode, a scan plot assumes characteristics of a digital oscilloscope. GBView3
superimposes a cross-hair pattern on the graph. Plot values at the intersection are displayed in the information window. Move the marker along the plot by moving the mouse. If you click the left mouse button at a point, the program records information when a data file is open. Press the right mouse button to exit the oscilloscope mode.

Click Return to exit the scan plot and to return to the slice plot.

15.6 Surface plots

Surface plots are three-dimensional views of the solution space. Three types of information may be superimposed: 1) boundaries of regions with foreground lighting, 2) dose values in a slice plane normal to one of the Cartesian axes and 3) dose values of region surface facets. Surface plots are created from the conformal mesh and preserve true spatial scaling.

View controls are the same as those in Geometer and Metamesh. With the mouse cursor in the center, the left button moves the viewpoint inward (zoom) and the right outward (expand view). Changes are reflected in the orientation box in the upper-right portion of the screen. The main plot is updated when you release the mouse button. With the cursor on the right-hand side of the plot, press the left button to walk around the object and the right button to move in the direction of the cursor arrow.

The commands of the Plot control popup menu control the appearance of the plot.

SURFACE PLOT STYLE

This command brings up a dialog with the following options: Hidden surface/Wireframe (plot style for region boundary facets, Include facets (include or omit the borders of region boundary facets), Include reference grid (plot lines with tick marks along the edges of the solution volume) and Include surface plot (include a plot of dose in a plane normal to one of the Cartesian axes). If a normal plane dose plot is active, you can use the controls on the right-hand side to set the normal direction of the plane and its position along the normal axis.

DISPLAYED REGIONS

The command brings up a dialog where you can pick region boundaries to superimpose on a plot. The default is that no regions are displayed. You can also determine whether the region boundary is plotted as a perspective view with foreground lighting or with color-coding according to the average local dose. Note that the program issues an error message in the normal plane plot is deactivated and no regions are chosen.

SET CUT PLANES

In a hidden surface plot, internal details may be obscured by surrounding parts or regions. This command brings up a dialog that allows you to adjust the display areas along the x, y and z axes. GBView3 does not display facets that lie outside the limits. With this feature you can create cutaway views. The default is that cut limits are set equal to the dimensions of the solution volume so that all facets are included.

SET SURFACE PLOT QUANTITY

There are seven available surface quantities: the total dose and dose contributions from primary and secondary electrons, photons and positrons.

15.7 Saving and loading views

The creation of plots for presentations may involve some effort. With the following two commands, you can save all the current view parameters in GBView3 and immediately restore the plot.

SAVE NAMED VIEW

Save the view parameters for the current plot. Quantities such as the slice axis, slice position and zoom limits are saved for two dimensional plots. Parameters for three-dimensional plots include the viewpoint position, displayed regions and cut planes. The information is stored in a text file in the current directory with a name of the form FPREFIX.FPV.

LOAD NAMED VIEW

Load a view file and refresh the plot
The file contains the complete set of plot parameters. This excerpt illustrates the format:

```
Program: GBView3
2D/3D: 2D
DisplayBy: Regions
Outline: On
NSlice: 40
SliceAxis: YAxis
PlotType: LogElemUp
XPMin: -1.500000E+00
XPMax: 4.250000E+00
```

If a specific solution file is loaded, the plot will be restored exactly. The saved view feature in GBView3 has two useful features if a different meshes are loaded:

- Dynamic adaptation to different solutions.
- Option for user control of the view parameter set.

Regarding the first feature, there are situations where you want to create consistent views of a set of solutions with different geometries, maintaining a similar appearance. Some plot properties (like the viewpoint rotation matrix) are applicable to any solution, but others (like region cut planes or slice plot limits) depend on the geometry. GBView3 checks each plot parameter for validity. If a parameter is outside the allowed range for the currently-loaded solution, the program computes an alternative. The goal is to preserve as many features of the view as possible.

You can modify view files with an editor. The order of entries is not rigid. On input, GBView3 uses a free-form parser. If a parameter is missing, the program simply makes no change from the value current in the program. The implication is that you can modify a saved view to include only elements essential to your application. For example, you could compare a series of assemblies with different sizes, maintaining an orthographic 3D view from the same point in Cartesian space. In this case, the view file would contain only the entries:

DView: 1.000000E+37
R11: 8.660253E-01
R12: -5.000002E-01
R13: $0.000000 \mathrm{E}+00$
R21: 1.669031E-01
R22: $2.890846 \mathrm{E}-01$
R23: $9.426408 \mathrm{E}-01$
R31: -4.713208E-01
R32: -8.163510E-01
R33: 3.338061E-01

16 GBView2 and GBView3 script operation

Scripts to control GBView2 or GBView3 have names of the form FPREFIX. SCR. They should be in the same directory as the data files. Scripts are text files that follow the GamBet syntax conventions. The program ignores blank lines and indentations. Data lines use the standard delimiters and comment lines begin with '*' (asterisk). Processing stops when the ENDFILE command is encountered.

To execute a script, click on the Run script command in the File menu. The program shows a list of available script files. Pick a file and click OK. The script operates on the presently-loaded data file or you can load other files from within the script. You can also sequentially open one or more data files.

GBView2 and GBView3 can run autonomously under script file control from the Windows command prompt. Suppose you have a file GTest. SCR in the directory \backslash GAMBET \backslash BUFFER and that GBVIEW2.EXE is in the directory \backslash GAMBET. From \backslash GAMBET \backslash BUFFER, type
../GBVIEW2 GTEST <Enter>
The following commands may appear in a script:

INPUT BACKSCAT.G2D

Close the current data file and load a file for analysis. The parameter is the full name of the data file. For the command illustrated, the post-processor would load the file BackScat. G2D. You can load several files for sequential analysis.

OUTPUT BACKSCAT

Close the current history file and open an output file BACKSCAT.DAT.

POINT 5.6510 .68

POINT 0.000 .0010 .00
Calculate the dose at the specified point and write the results to the data file. In GBView2, the two real number parameters are the coordinates of the point $(x-y$ or $z-r)$ in units set by DUnit. GBView3 requires three real numbers for the x, y, z coordinates.

SCAN 0.000 .0010 .000 .00
SCAN ($0.00,0.00,3.00$) ($0.00,0.00,10.00$)
Write calculated dose values on a line between the specified points to the data file. In GBView2, the four real-number parameters are the starting and end coordinates in units set by DUnit: [xstart ystart xend yend] or [zstart rstart zend rend]. In GBView3, supply six real-number parameters, [xstart ystart zstart xend yend zend].

PATH PathName

PATH LargeArc.DAT

Calculate the dose at the coordinates listed in the file PathName and write the results to the data file. The path file must be available in the current directory. For GBView2 each data line contains
two real numbers giving a position (x, y) or (z, r) (depending on the symmetry of the geometry file). For GBView3 the data lines should contain three real numbers giving (x, y, z) values. Enter the coordinates in units set by DUnit. The path file may contain any number of data lines, blank lines and comments (starting with an asterisk). End the list with the EndFile command.

ELEMENT 5.6510 .68

ELEMENT 0.00, 1.00, 5.67

Write the properties of the element at the specified point to the data file. In GBView $\mathbf{2}$, the two real number parameters are the coordinates of the point $(x-y$ or $z-r)$ in units set by DUnit. Enter three real numbers (x, y, z) in GBView3.

NSCAN 150

Set the number of points in a line scan. The default is 50 and the maximum number is 500 .

REGION 5

Write volume integrals for a region to the data file. The integer parameter is the region number.

VOLUMEINT

Write volume integrals for the full solution and regions to the data file.

MATRIX GOLDFOIL 10200.000 .005 .0010 .00

MATRIX GOLDFOIL 0.001 .00100 .001 .00100 .005 .0025
Create a file and record dose values on a regular rectangular matrix. In GBView2, the command must contain the following seven parameters.

Param 1: The prefix of the matrix file FPREFIX.MTX (string).
Param 2: Number of intervals along the x (or z) direction (integer).
Param 3: Number of intervals along the y (or r) direction (integer).
Param 4-7: The coordinates of the corners of a box in the solution volume, $\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$ or $\left[z_{1}, r_{1}, z_{2}, r_{2}\right]$ (real).
GBView3 requires the following 10 parameters:
Param 1: The prefix of the matrix file FPREFIX.MTX (string).
Param 2-4: The box dimensions $x_{\min }$ and $x_{\max }$ (real) and the number of intervals N_{x} along x (integer).
Param 5-7: The box dimensions $y_{\min }$ and $y_{\max }$ (real) and the number of intervals N_{y} along y (integer).
Param 8-10: The box dimensions $z_{\min }$ and $z_{\max }$ (real) and the number of intervals N_{z} along z (integer)

ENDFILE

Terminate execution of the script file. You can add descriptive text in any format after this command.

17 Penelope predefined materials

This section lists predefined materials included in the Penelope file PDCOMPOS.P06 file along with their identifying numbers. These material numbers may be used in the

MATERIAL MatNo [CONDUCTOR,INSULATOR]
command of the COMPOSITION section.

17.1 Elements

For elements, the material number equals the atomic number

1	Hydrogen	50	Tin
2	Helium	51	Antimony
3	Lithium	52	Tellurium
4	Beryllium	53	Iodine
5	Boron	54	Xenon
6	Amorphous carbon	55	Cesium
7	Nitrogen	56	Barium
8	Oxygen	57	Lanthanum
9	Fluorine	58	Cerium
10	Neon	59	Praseodymium
11	Sodium	60	Neodymium
12	Magnesium	61	Promethium
13	Aluminum	62	Samarium
14	Silicon	63	Europium
15	Phosphorus	64	Gadolinium
16	Sulfur	65	Terbium
17	Chlorine	66	Dysprosium
18	Argon	67	Holmium
19	Potassium	68	Erbium
20	Calcium	69	Thulium
21	Scandium	70	Ytterbium
22	Titanium	71	Lutetium
23	Vanadium	72	Hafnium
24	Chromium	73	Tantalum
25	Manganese	74	Tungsten
26	Iron	75	Rhenium
27	Cobalt	76	Osmium
28	Nickel	77	Iridium
29	Copper	78	Platinum
30	Zinc	79	Gold
31	Gallium	80	Mercury
32	Germanium	81	Thallium
33	Arsenic	82	Lead
34	Selenium	83	Bismuth
		50	

35	Bromine	84	Polonium
36	Krypton	85	Astatine
37	Rubidium	86	Radon
38	Strontium	87	Francium
39	Yttrium	88	Radium
40	Zirconium	89	Actinium
41	Niobium	90	Thorium
42	Molybdenum	91	Protactinium
43	Technetium	92	Uranium
44	Ruthenium	93	Neptunium
45	Rhodium	94	Plutonium
46	Palladium	95	Americium
47	Silver	96	Curium
48	Cadmium	97	Berkelium
49	Indium	98	Californium
		99	Einsteinium

17.2 Compounds and mixtures

Compunds and mixtures appear in alphabetical order.

100	Acetone
101	Acetylene
102	Adenine
103	Adipose tissue (ICRP)
104	Air, dry (near sea level)
105	Alanine
106	Aluminum oxide
107	Amber
108	Ammonia
109	Aniline
110	Anthracene
111	B-100 bone-equivalent plastic
112	Bakelite
113	Barium fluoride
114	Barium sulfate
115	Benzene
116	Beryllium oxide
117	Bismuth germanium oxide
118	Blood (ICRP)
119	Bone, compact (ICRU)
120	Bone, cortical (ICRP)
121	Boron carbide
122	Boron oxide
123	Brain (ICRP)
124	Butane
125	N-butyl alcohol
126	C-552 air-equivalent plastic
127	Cadmium telluride

128	Cadmium tungstate
129	Calcium carbonate
130	Calcium fluoride
131	Calcium oxide
132	Calcium sulfate
133	Calcium tungstate
134	Carbon dioxide
135	Carbon tetrachloride
136	Cellulose acetate, cellophane
137	Cellulose acetate butyrate
138	Cellulose nitrate
139	Ceric sulfate dosimeter solution
140	Cesium fluoride
141	Cesium iodide
142	Chlorobenzene
143	Chloroform
144	Concrete, portland
145	Cyclohexane
146	1,2-dichlorobenzene
147	Dichlorodiethyl ether
148	1,2-dichloroethane
149	Diethyl ether
150	N,n-dimethyl formamide
151	Dimethyl sulfoxide
152	Ethane
153	Ethyl alcohol
154	Ethyl cellulose
155	Ethylene
156	Eye lens (ICRP)
157	Ferric oxide
158	Ferroboride
159	Ferrous oxide
160	Ferrous sulfate dosimeter solution
161	Freon-12
162	Freon-12b2
163	Freon-13
164	Freon-13b1
165	Freon-13i1
166	Gadolinium oxysulfide
167	Gallium arsenide
168	Gel in photographic emulsion
169	Pyrex glass
170	Glass, lead
171	Glass, plate
172	Glucose
173	Glutamine
174	Glycerol
175	Graphite
176	Guanine

177	Gypsum, plaster of Paris
178	N-heptane
179	N-hexane
180	Kapton polyimide film
181	Lanthanum oxybromide
182	Lanthanum oxysulfide
183	Lead oxide
184	Lithium amide
185	Lithium carbonate
186	Lithium fluoride
187	Lithium hydride
188	Lithium iodide
189	Lithium oxide
190	Lithium tetraborate
191	Lung (ICRP)
192	M3 wax
193	Magnesium carbonate
194	Magnesium fluoride
195	Magnesium oxide
196	Magnesium tetraborate
197	Mercuric iodide
198	Methane
199	Methanol
200	Mix d wax
201	Ms20 tissue substitute
202	Muscle, skeletal (ICRP)
203	Muscle, striated (ICRU)
204	Muscle-equivalent liquid, with sucrose
205	Muscle-equivalent liquid, without sucrose
206	Naphthalene
207	Nitrobenzene
208	Nitrous oxide
209	Nylon, du Pont elvamide 8062
210	Nylon, type 6 and type 6/6
211	Nylon, type 6/10
212	Nylon, type 11 (rilsan)
213	Octane, liquid
214	Paraffin wax
215	N-pentane
216	Photographic emulsion
217	Plastic scintillator (vinyltoluene based)
218	Plutonium dioxide
219	Polyacrylonitrile
220	Polycarbonate (makrolon, lexan)
221	Polychlorostyrene
222	Polyethylene
223	Polyethylene terephthalate (mylar)

226	Polypropylene
227	Polystyrene
228	Polytetrafluoroethylene (teflon)
229	Polytrifluorochloroethylene
230	Polyvinyl acetate
231	Polyvinyl alcohol
232	Polyvinyl butyral
233	Polyvinyl chloride
234	Polyvinylidene chloride (saran)
235	Polyvinylidene fluoride
236	Polyvinyl pyrrolidone
237	Potassium iodide
238	Potassium oxide
239	Propane
240	Propane, liquid
241	N-propyl alcohol
242	Pyridine
243	Rubber, butyl
244	Rubber, natural
245	Rubber, neoprene
246	Silicon dioxide
247	Silver bromide
248	Silver chloride
249	Silver halides in photographic emulsion
250	Silver iodide
251	Skin (ICRP)
252	Sodium carbonate
253	Sodium iodide
254	Sodium monoxide
255	Sodium nitrate
256	Stilbene
257	Sucrose
258	Terphenyl
259	Testes (ICRP)
260	Tetrachloroethylene
261	Thallium chloride
262	Tissue, soft (ICRP)
263	Tissue, soft (ICRU four-component)
264	Tissue-equivalent gas (methane based)
265	Tissue-equivalent gas (propane based)
266	A-150 tissue-equivalent plastic
267	Titanium dioxide
268	Toluene
269	Trichloroethylene
270	Triethyl phosphate
271	Tungsten hexafluoride
272	Uranium dicarbide
273	Uranium monocarbide
274	Uranium oxide

275 Urea
276 Valine
277 Viton fluoroelastomer
278 Water, liquid
279 Water vapor
280 Xylene

18 Penelope data files

The following files must be located in the directory /PATH/GAMBET/REFERENCE.
$\begin{array}{ll}\text { eeldx001.p06 } & \text { eeldx046.p06 } \\ \text { eeldx002.p06 } & \text { eeldx047.p06 } \\ \text { eeldx003.p06 } & \text { eeldx048.p06 } \\ \text { eeldx004.p06 } & \text { eeldx049.p06 } \\ \text { eeldx005.p06 } & \text { eeldx050.p06 } \\ \text { eeldx006.p06 } & \text { eeldx051.p06 } \\ \text { eeldx007.p06 } & \text { eeldx052.p06 } \\ \text { eeldx008.p06 } & \text { eeldx053.p06 } \\ \text { eeldx009.p06 } & \text { eeldx054.p06 } \\ \text { eeldx010.p06 } & \text { eeldx055.p06 } \\ \text { eeldx011.p06 } & \text { eeldx056.p06 } \\ \text { eeldx012.p06 } & \text { eeldx057.p06 } \\ \text { eeldx013.p06 } & \text { eeldx058.p06 } \\ \text { eeldx014.p06 } & \text { eeldx059.p06 } \\ \text { eeldx015.p06 } & \text { eeldx060.p06 } \\ \text { eeldx016.p06 } & \text { eeldx061.p06 } \\ \text { eeldx017.p06 } & \text { eeldx062.p06 } \\ \text { eeldx018.p06 } & \text { eeldx063.p06 } \\ \text { eeldx019.p06 } & \text { eeldx064.p06 } \\ \text { eeldx020.p06 } & \text { eeldx065.p06 } \\ \text { eeldx021.p06 } & \text { eeldx066.p06 } \\ \text { eeldx022.p06 } & \text { eeldx067.p06 } \\ \text { eeldx023.p06 } & \text { eeldx068.p06 } \\ \text { eeldx024.p06 } & \text { eeldx069.p06 } \\ \text { eeldx025.p06 } & \text { eeldx070.p06 } \\ \text { eeldx026.p06 } & \text { eeldx071.p06 } \\ \text { eeldx027.p06 } & \text { eeldx072.p06 } \\ \text { eeldx028.p06 } & \text { eeldx073.p06 } \\ \text { eeldx029.p06 } & \text { eeldx074.p06 } \\ \text { eeldx030.p06 } & \text { eeldx075.p06 } \\ \text { eeldx031.p06 } & \text { eeldx076.p06 } \\ \text { eeldx032.p06 } & \text { eeldx077.p06 } \\ \text { eeldx033.p06 } & \text { eeldx078.p06 } \\ \text { eeldx034.p06 } & \text { eeldx079.p06 } \\ \text { eeldx035.p06 } & \text { eeldx080.p06 } \\ \text { eeldx036.p06 } & \text { eeldx081.p06 } \\ \text { eeldx037.p06 } & \text { eeldx082.p06 } \\ \text { eeldx038.p06 } & \text { eeldx083.p06 } \\ \text { eeldx039.p06 } & \text { eeldx084.p06 } \\ \text { eeldx040.p06 } & \text { eeldx085.p06 } \\ \text { eeldx041.p06 } & \text { eeldx086.p06 } \\ \text { eeldx042.p06 } & \text { eeldx087.p06 } \\ \text { eeldx043.p06 } & \text { eeldx088.p06 } \\ \text { eeldx044.p06 } & \text { eeldx089.p06 } \\ \text { eeldx045.p06 } & \text { eeldx090.p06 }\end{array}$
eeldx091.p06
eeldx092.p06
eeldx093.p06
eeldx094.p06
eeldx095.p06
eeldx096.p06
eeldx097.p06
eeldx098.p06
eeldx099.p06
pdatconf.p06
pdbrang.p06
pdcompos.p06
pdebr01.p06
pdebr02.p06
pdebr03.p06
pdebr04.p06
pdebr05.p06
pdebr06.p06
pdebr07.p06
pdebr08.p06
pdebr09.p06
pdebr10.p06
pdebr11.p06
pdebr12.p06
pdebr13.p06
pdebr14.p06
pdebr15.p06
pdebr16.p06
pdebr17.p06
pdebr18.p06
pdebr19.p06
pdebr20.p06
pdebr21.p06
pdebr22.p06
pdebr23.p06
pdebr24.p06
pdebr25.p06
pdebr26.p06
pdebr27.p06
pdebr28.p06
pdebr29.p06
pdebr30.p06
pdebr31.p06
pdebr32.p06
pdebr33.p06
pdebr34.p06
pdebr35.p06
pdebr36.p06
pdebr37.p06
pdebr38.p06
pdebr39.p06
pdebr40.p06
pdebr41.p06
pdebr42.p06 pdebr43.p06 pdebr44.p06 pdebr45.p06 pdebr46.p06 pdebr47.p06 pdebr48.p06 pdebr49.p06 pdebr50.p06 pdebr51.p06 pdebr52.p06 pdebr53.p06 pdebr54.p06 pdebr55.p06 pdebr56.p06 pdebr57.p06 pdebr58.p06 pdebr59.p06 pdebr60.p06 pdebr61.p06 pdebr62.p06 pdebr63.p06 pdebr64.p06 pdebr65.p06 pdebr66.p06 pdebr67.p06 pdebr68.p06 pdebr69.p06 pdebr70.p06 pdebr71.p06 pdebr72.p06 pdebr73.p06 pdebr74.p06 pdebr75.p06 pdebr76.p06 pdebr77.p06 pdebr78.p06
pdebr79.p06
pdebr80.p06
pdebr81.p06
pdebr82.p06
pdebr83.p06
pdebr84.p06
pdebr85.p06
pdebr86.p06
pdebr87.p06
pdebr88.p06
pdebr89.p06
pdebr90.p06
pdebr91.p06
pdebr92.p06
pdebr93.p06
pdebr94.p06
pdebr95.p06
pdebr96.p06
pdebr97.p06
pdebr98.p06
pdebr99.p06
pdeel01.p06
pdeel02.p06
pdeel03.p06
pdeel04.p06
pdeel05.p06
pdeel06.p06
pdeel07.p06
pdeel08.p06
pdeel09.p06
pdeel10.p06
pdeel11.p06
pdeel12.p06
pdeel13.p06
pdeel14.p06
pdeel15.p06
pdeel16.p06
pdeel17.p06
pdeel18.p06
pdeel19.p06
pdeel20.p06
pdeel21.p06
pdeel22.p06
pdeel23.p06
pdeel24.p06
pdeel25.p06
pdeel26.p06 pdeel27.p06 pdeel28.p06 pdeel29.p06 pdeel30.p06 pdeel31.p06 pdeel32.p06 pdeel33.p06 pdeel34.p06 pdeel35.p06 pdeel36.p06 pdeel37.p06 pdeel38.p06 pdeel39.p06 pdeel40.p06 pdeel41.p06 pdeel42.p06 pdeel43.p06 pdeel44.p06 pdeel45.p06 pdeel46.p06 pdeel47.p06 pdeel48.p06 pdeel49.p06 pdeel50.p06 pdeel51.p06 pdeel52.p06 pdeel53.p06 pdeel54.p06 pdeel55.p06 pdeel56.p06 pdeel57.p06 pdeel58.p06 pdeel59.p06 pdeel60.p06 pdeel61.p06 pdeel62.p06 pdeel63.p06 pdeel64.p06 pdeel65.p06 pdeel66.p06 pdeel67.p06 pdeel68.p06 pdeel69.p06
pdeel70.p06 pdeel71.p06 pdeel72.p06 pdeel73.p06 pdeel74.p06 pdeel75.p06 pdeel76.p06 pdeel77.p06 pdeel78.p06 pdeel79.p06 pdeel80.p06 pdeel81.p06 pdeel82.p06 pdeel83.p06 pdeel84.p06 pdeel85.p06 pdeel86.p06 pdeel87.p06 pdeel88.p06 pdeel89.p06 pdeel90.p06 pdeel91.p06 pdeel92.p06 pdeel93.p06 pdeel94.p06 pdeel95.p06 pdeel96.p06 pdeel97.p06 pdeel98.p06 pdeel99.p06 pdeflist.p06 pdesi01.p06 pdesi02.p06 pdesi03.p06 pdesi04.p06 pdesi05.p06 pdesi06.p06 pdesi07.p06 pdesi08.p06 pdesi09.p06 pdesi10.p06 pdesi11.p06 pdesi12.p06 pdesi13.p06 pdesi14.p06
pdesi15.p06 pdesi16.p06 pdesi17.p06 pdesi18.p06 pdesi19.p06 pdesi20.p06 pdesi21.p06 pdesi22.p06 pdesi23.p06 pdesi24.p06 pdesi25.p06 pdesi26.p06 pdesi27.p06 pdesi28.p06 pdesi29.p06 pdesi30.p06 pdesi31.p06 pdesi32.p06 pdesi33.p06 pdesi34.p06 pdesi35.p06 pdesi36.p06 pdesi37.p06 pdesi38.p06 pdesi39.p06 pdesi40.p06 pdesi41.p06 pdesi42.p06 pdesi43.p06 pdesi44.p06 pdesi45.p06 pdesi46.p06 pdesi47.p06 pdesi48.p06 pdesi49.p06 pdesi50.p06 pdesi51.p06 pdesi52.p06 pdesi53.p06 pdesi54.p06 pdesi55.p06 pdesi56.p06 pdesi57.p06 pdesi58.p06 pdesi59.p06
pdesi60.p06 pdesi61.p06 pdesi62.p06 pdesi63.p06 pdesi64.p06 pdesi65.p06 pdesi66.p06 pdesi67.p06 pdesi68.p06 pdesi69.p06 pdesi70.p06 pdesi71.p06 pdesi72.p06 pdesi73.p06 pdesi74.p06 pdesi75.p06 pdesi76.p06 pdesi77.p06 pdesi78.p06 pdesi79.p06 pdesi80.p06 pdesi81.p06 pdesi82.p06 pdesi83.p06 pdesi84.p06 pdesi85.p06 pdesi86.p06 pdesi87.p06 pdesi88.p06 pdesi89.p06 pdesi90.p06 pdesi91.p06 pdesi92.p06 pdesi93.p06 pdesi94.p06 pdesi95.p06 pdesi96.p06 pdesi97.p06 pdesi98.p06 pdesi99.p06 pdgph01.p06 pdgph02.p06 pdgph03.p06 pdgph04.p06 pdgph05.p06
pdgph06.p06
pdgph07.p06 pdgph08.p06 pdgph09.p06 pdgph10.p06 pdgph11.p06 pdgph12.p06 pdgph13.p06 pdgph14.p06 pdgph15.p06 pdgph16.p06 pdgph17.p06 pdgph18.p06 pdgph19.p06 pdgph20.p06 pdgph21.p06 pdgph22.p06 pdgph23.p06 pdgph24.p06 pdgph25.p06 pdgph26.p06 pdgph27.p06 pdgph28.p06 pdgph29.p06 pdgph30.p06 pdgph31.p06 pdgph32.p06 pdgph33.p06 pdgph34.p06 pdgph35.p06 pdgph36.p06 pdgph37.p06 pdgph38.p06 pdgph39.p06 pdgph40.p06 pdgph41.p06 pdgph42.p06 pdgph43.p06 pdgph44.p06 pdgph45.p06 pdgph46.p06 pdgph47.p06 pdgph48.p06 pdgph49.p06 pdgph50.p06
pdgph51.p06
pdgph52.p06 pdgph53.p06 pdgph54.p06 pdgph55.p06 pdgph56.p06 pdgph57.p06 pdgph58.p06 pdgph59.p06 pdgph60.p06 pdgph61.p06 pdgph62.p06 pdgph63.p06 pdgph64.p06 pdgph65.p06 pdgph66.p06 pdgph67.p06 pdgph68.p06 pdgph69.p06 pdgph70.p06 pdgph71.p06 pdgph72.p06 pdgph73.p06 pdgph74.p06 pdgph75.p06 pdgph76.p06 pdgph77.p06 pdgph78.p06 pdgph79.p06 pdgph80.p06 pdgph81.p06 pdgph82.p06 pdgph83.p06 pdgph84.p06 pdgph85.p06 pdgph86.p06 pdgph87.p06 pdgph88.p06 pdgph89.p06 pdgph90.p06 pdgph91.p06 pdgph92.p06 pdgph93.p06 pdgph94.p06 pdgph95.p06
pdgph96.p06
pdgph97.p06 pdgph98.p06 pdgph99.p06 pdgpp01.p06 pdgpp02.p06 pdgpp03.p06 pdgpp04.p06 pdgpp05.p06 pdgpp06.p06 pdgpp07.p06 pdgpp08.p06 pdgpp09.p06 pdgpp10.p06 pdgpp11.p06 pdgpp12.p06 pdgpp13.p06 pdgpp14.p06 pdgpp15.p06 pdgpp16.p06 pdgpp17.p06 pdgpp18.p06 pdgpp19.p06 pdgpp20.p06 pdgpp21.p06 pdgpp22.p06 pdgpp23.p06 pdgpp24.p06 pdgpp25.p06 pdgpp26.p06 pdgpp27.p06 pdgpp28.p06 pdgpp29.p06 pdgpp30.p06 pdgpp31.p06 pdgpp32.p06 pdgpp33.p06 pdgpp34.p06 pdgpp35.p06 pdgpp36.p06 pdgpp37.p06 pdgpp38.p06 pdgpp39.p06 pdgpp40.p06 pdgpp41.p06
pdgpp42.p06 pdgpp43.p06 pdgpp44.p06 pdgpp45.p06 pdgpp46.p06 pdgpp47.p06 pdgpp48.p06 pdgpp49.p06 pdgpp50.p06 pdgpp51.p06 pdgpp52.p06 pdgpp53.p06 pdgpp54.p06 pdgpp55.p06 pdgpp56.p06 pdgpp57.p06 pdgpp58.p06 pdgpp59.p06 pdgpp60.p06 pdgpp61.p06 pdgpp62.p06 pdgpp63.p06 pdgpp64.p06 pdgpp65.p06 pdgpp66.p06 pdgpp67.p06 pdgpp68.p06 pdgpp69.p06 pdgpp70.p06 pdgpp71.p06 pdgpp72.p06 pdgpp73.p06 pdgpp74.p06 pdgpp75.p06 pdgpp76.p06 pdgpp77.p06 pdgpp78.p06 pdgpp79.p06 pdgpp80.p06 pdgpp81.p06 pdgpp82.p06 pdgpp83.p06 pdgpp84.p06 pdgpp85.p06 pdgpp86.p06
pdgpp87.p06
pdgpp88.p06
pdgpp89.p06
pdgpp90.p06 pdgpp91.p06 pdgpp92.p06 pdgpp93.p06 pdgpp94.p06 pdgpp95.p06 pdgpp96.p06 pdgpp97.p06 pdgpp98.p06 pdgpp99.p06 pdpsi01.p06 pdpsi02.p06 pdpsi03.p06 pdpsi04.p06 pdpsi05.p06 pdpsi06.p06 pdpsi07.p06 pdpsi08.p06 pdpsi09.p06 pdpsi10.p06 pdpsi11.p06 pdpsi12.p06 pdpsi13.p06 pdpsi14.p06 pdpsi15.p06 pdpsi16.p06 pdpsi17.p06 pdpsi18.p06 pdpsi19.p06 pdpsi20.p06 pdpsi21.p06 pdpsi22.p06 pdpsi23.p06 pdpsi24.p06 pdpsi25.p06 pdpsi26.p06 pdpsi27.p06 pdpsi28.p06 pdpsi29.p06 pdpsi30.p06 pdpsi31.p06 pdpsi32.p06
pdpsi33.p06 pdpsi34.p06 pdpsi35.p06 pdpsi36.p06 pdpsi37.p06 pdpsi38.p06 pdpsi39.p06 pdpsi40.p06 pdpsi41.p06 pdpsi42.p06 pdpsi43.p06 pdpsi44.p06 pdpsi45.p06 pdpsi46.p06 pdpsi47.p06 pdpsi48.p06 pdpsi49.p06 pdpsi50.p06 pdpsi51.p06 pdpsi52.p06 pdpsi53.p06 pdpsi54.p06 pdpsi55.p06 pdpsi56.p06 pdpsi57.p06 pdpsi58.p06 pdpsi59.p06 pdpsi60.p06 pdpsi61.p06 pdpsi62.p06 pdpsi63.p06 pdpsi64.p06 pdpsi65.p06 pdpsi66.p06 pdpsi67.p06 pdpsi68.p06 pdpsi69.p06 pdpsi70.p06 pdpsi71.p06 pdpsi72.p06 pdpsi73.p06 pdpsi74.p06 pdpsi75.p06 pdpsi76.p06 pdpsi77.p06

pdpsi78.p06	peldx023.p06	peldx068.p06
pdpsi79.p06	peldx024.p06	peldx069.p06
pdpsi80.p06	peldx025.p06	peldx070.p06
pdpsi81.p06	peldx026.p06	peldx071.p06
pdpsi82.p06	peldx027.p06	peldx072.p06
pdpsi83.p06	peldx028.p06	peldx073.p06
pdpsi84.p06	peldx029.p06	peldx074.p06
pdpsi85.p06	peldx030.p06	peldx075.p06
pdpsi86.p06	peldx031.p06	peldx076.p06
pdpsi87.p06	peldx032.p06	peldx077.p06
pdpsi88.p06	peldx033.p06	peldx078.p06
pdpsi89.p06	peldx034.p06	peldx079.p06
pdpsi90.p06	peldx035.p06	peldx080.p06
pdpsi91.p06	peldx036.p06	peldx081.p06
pdpsi92.p06	peldx037.p06	peldx082.p06
pdpsi93.p06	peldx038.p06	peldx083.p06
pdpsi94.p06	peldx039.p06	peldx084.p06
pdpsi95.p06	peldx040.p06	peldx085.p06
pdpsi96.p06	peldx041.p06	peldx086.p06
pdpsi97.p06	peldx042.p06	peldx087.p06
pdpsi98.p06	peldx043.p06	peldx088.p06
pdpsi99.p06	peldx044.p06	peldx089.p06
pdrelax.p06	peldx045.p06	peldx090.p06
peldx001.p06	peldx046.p06	peldx091.p06
peldx002.p06	peldx04.p06	peldx092.p06
peldx003.p06	peldx048.p06	peldx093.p06
peldx004.p06	peldx049.p06	peldx094.p06
peldx005.p06	peldx050.p06	peldx095.p06
peldx006.p06	peldx051.p06	peldx096.p06
peldx007.p06	peldx052.p06	peldx097.p06
peldx008.p06	peldx053.p06	peldx098.p06
peldx009.p06	peldx054.p06	peldx099.p06
peldx010.p06	peldx05.p06	
peldx011.p06	peldx056.p06	
peldx012.p06	peldx057.p06	
peldx021.p06	peldx066.p06	
peldx013.p06	peldx058.p06	
peldx014.p06	peldx059.p06	
peldx015.p06	peldx060.p06	
peldx016.p06	peldx061.p06	
peldx017.p06	peldx062.p06	
peldx018.p06	peldx063.p06	
peldx019.p06	peldx064.p06	
peldx		

Index

absorption energy, choosing, 35
analysis script, 74
Element, 75
Input, 74
Matrix, 75
NScan, 75
Output, 74
Path, 74
Point, 74
Region, 75
Scan, 74
bremsstrahlung, 36
calculation, stages, 41
command
MCA, 50
commands
BCalc, 28
BFile2D, 24
BFile3D, 24
BTable, 24
BUni, 17, 25
C1, 35
C2, 35
DsMax, 21, 37
DUnit, 16, 23
EAbs, 20, 35
ECalc, 28
EFile2D, 23
EFile3D, 24
EMax, 20, 36
Enhance, 37
EscapeFilter, 40
EscapeOff, 39
Force, 20, 36
FullInfo, 28
GFile2D, 17, 23
GFile3D, 23
Material, 26
MCA, 40
NPMult, 19, 32
NSearchWidth, 38
Parallel, 39, 44
PFile, 19, 32
PList, 19, 31

PlotOn, 39
Reduce, 37
Region, 27
Rotate, 19, 24, 25, 32
RSeed, 36
SFile, 19
Shift, 19, 24, 25, 33
SList, 19, 30, 31
StepLimit, 39
StepMax, 21, 38
Time, 21, 38
TPulse, 19, 32
WCC, 35
WCR, 35
Composition section, $15,18,26$
deposited energy file, 50
dose file, 48
dose units, 12, 32, 48, 53
DsMax, choosing value, 37
electric field, 22, 23
escape file, 28,48
exclusion region, 28
GamBet
background operation, 42
batch file control, 43
file types, 48
parallel operation, 44
program menu, 41
GBLaunch, 8, 41
Create and run tasks, 8
GBView2 commands
Close data listing, 55
Close trajectory file, 55
Contour plot type, 57
Create script, 56
Edit data file, 56
Edit file, 56
Edit script, 56
Element outline, 57
Element properties, 60
Line scan, 59
Load dose file, 55
Load trajectory file, 55
Matrix file, 60

Mouse/keyboard, 57
Open data listing, 55
Oscilloscope mode, 62
Plot export, 59
Plot limits, 57
Plot type, 56
Plotted quantity, 57
Point calculation, 59
Region properties, 60
Run script, 56
Save dose file, 61
Save plot file, 59
Scan quantity, 60
Smooth dose, 61
Snap mode, 57
Toggle grid, 57
Volume integrals, 60
GBView3 commands
Create script, 64
Cut planes, 71
Displayed regions, 71
Dose file information, 63
Edit, 64
Line scan, 65, 70
Load dose file, 63
Load named view, 72
Load trajectory file, 63
Matrix file, 65
Open data listing, 63
Oscilloscope mode, 71
Plot export, 67
Plot quantity, 67
Plot style, 67, 69, 71
Point calculation, 64, 70
Region properties, 65
Run script, 64
Save dose file, 66
Save named view, 72
Save plot file, 67
Set plane, 67
Slice plane, 68
Smooth dose, 66
Volume integrals, 65
GBView3 plot style
plane, 66
sclie, 68
surface, 71
geometry mesh, 16, 22
Geometry section, 15, 16, 22
installation instructions, 7
interaction forcing, 20, 36
Listing file, 48, 51
magnetic field, 22, 24
beam-generated, 24
table format, 24
material
defining new, 27
meshes, rules for combining, 22
multi-channel analyzer, 40, 50
OmniTrak, 5
PRT file, 18, 29, 31
package components, 5
pair production, 36
parallel operation sequence, 44
parallel processing, 7
child process, 44
combining data, 45
distributed memory architecture, 44
file conflict, 45
listing file, 45
operation sequence, 44
primary process, 44
run time reduction, 46
shared memory architecture, 44
particle
flux units, 12, 49, 54
primary, definition, 29
properties, 30, 31
Penelope, 5, 7, 15, 19, 28, 37
data files, 82
manual, 34
materials, 18, 26, 76
setup information, 51
Plot views, saving, 72
Process section, 15, 19, 34
program function, 5
random number seed, 36, 47
run statistics, 48
run time
optimizing, 36
script
example, 15
Setup dialog, 16
structure, 14
shower, definition, 29, 32
simulation modes, 12
source information, generating, 29
Source section, 15, 18, 29
standard delimiters, 14
statistical quantities, 51
dose, 53
energy conservation, 53
primary particles, 52
tasks
in GBLaunch, 8
trajectory file, 49
Trak, 5, 23
PRT file, 18, 29, 31
variance reduction, 36
void region, 28

Penelope is covered by the following copyright:
PENELOPE/PENGEOM (version 2006)
Copyright (c) 2001-2006
Universitat de Barcelona
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appears in all copies and that both that copyright notice and this permission notice appear in all supporting documentation. The Universitat de Barcelona makes no representations about the suitability of this software for any purpose. It is provided "as is" without express pr implied warranty.

[^0]: ${ }^{1}$ Francesc Salvat, Jos M. Fernndez-Varea, and Josep Sempau, PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport, (Proceedings of a Workshop/Training Course, July 4-7, 2006), NEA Number 6222.

