您的位置:首页 > 产品信息 > 高能密度物理 > HEDP模拟仿真软件 > 状态方程和不透明度模拟
状态方程和不透明度模拟
发布日期:2017-09-16

关键词:不透明度、状态方程、辐射、流体力学、等离子体

 

一、PROPACEOS软件介绍

PROPACEOS (Prism OPACity and Equation Of State code)生成状态方程(EOS)和多组不透明度数据,并为辐射-流体力学仿真软件模块利用。对于一个网格的等离子体条件(温度和密度),PROPACEOS计算频率相关不透明度,并指定内部能量和压力,将结果写入适合流体力学代码的文件中。开发PROPACEOS重点是让该软件容易使用,采用用户友好图形界面创建问题、监控模拟过程、以及显示模拟结果。PROPACEOS模块一般包含一套1-18号元素的原子数据库,其他元素数据库可选。

 

二、PROPACEOS主要特点

计算单一元素或多元素等离子体状态方程和不透明度。

包含简单易用图形用户界面(GUI)用于创建问题和查看结果。

包含在线文件,可直接访问帮助页面

计算状态方程和不透明度数据

计算LTE等离子体/光学厚度non-LTE等离子体状态方程和不透明度数据,

可以用现有工作窗口批量模式运行

支持简单和指定的网格用于:温度、密度、光子能量

独立网格可以用来计算状态方程和不透明度。

高密度效应通过附加的QEOS模型解决。

包括图形软件包用于模拟结果形象化:频率相关不透明度、温度和密度相关EOS和不透明度结果。

包含下列碰撞-辐射原子过程模拟:

*   碰撞电离、复合、激发和退激

*   光致电离和受激复合

*   光激发和受激发射

*   自发衰减

*   辐射复合

*   双电子复合、自电离和电子俘获

倍频器(Multipliers)可以应用于上述过程的速率系数

在线轮廓度模拟中包括多普勒、自然(包括自电离贡献)、斯塔克增宽

利用ATBASE原子代码模块支持:

*   光电离截面

*   振子强度

*   碰撞电离截面

*   碰撞激发截面

*   原子能级能量与跃迁能量

*   双电子复合、自电离和电子俘获率.

*   包含NIST原子能级和振子强度

可以用来查看先前计算的PROPACEOS数据文件或SESAME文件 

与其他应用程序接口:

AtomicModelBuilder一种用户用好的软件工具,用于创建用户原子模型

PrismPLOT是一种图形工具,用于查看计算结果

HELIOS读取PROPACEOS数据和支持查看状态方程及不透明度数据

*For non-LTE plasmas.

 

三、PROPACEOS用户界面

*   Prism软件容易使用。

*   图形用户界面方便设置。

*   交互式图形允许容易显示大量结果

PROPACEOS软件界面例子:

         

                                 材料创建窗口                                                网格生成窗口

       

                                     不透明度查看器                                           状态方程查看器

 

四、安装平台要求

PROPACEOS采用交叉平台C++用户界面开发的,同时也采用OpenGL图形应用框架,因此使用交叉平台UI软件和OpenGL允许PROPACEOS支持MS Windows, Unix, and Mac 平台。PROPACEOS当前支持:

*  MS Windows (7(32和64位), XP)

*  Linux (32和64位)

*  Mac OSX.

 

五、全球参考用户

参考用户

国家实验室和研究所

 

大学 用户

企业用户

六、参考文献及帮助文件

PROPACEOS comes with online documentation and a set of examples that allow users to get up-and-running quickly. Many of the user interface windows have Help buttons that go directly to the relevant help page.

PROPACEOS Reports and Whitepapers

Physics algorithms in PROPACEOS are the same as those used in PrismSPECT. Readers are referred toPrismSPECT reports and whitepapers for information on atomic processes and spectral modeling.

For examples of utilization of PROPACEOS data in radiation-hydrodynamics simulations, readers are referred to HELIOS reports and whitepapers.

See also:

Memos

Comparisons of HELIOS Simulation Results Using PROPACEOS and SESAME Equations of State

 

七、案例创建CH数据

该案例展示了如何计算CH的EOS和不透明度数据。网格总结如下:

*  Temperature:

  • low temperatures: 0.1, 0.3, 0.5, 0.8, 1.0 eV
  • evenly-spaced linearly from 2 to 60 eV at 2 eV intervals
  • evenly-spaced linearly from 60 to 100 eV at 10 eV intervals

*  Ion density:

  • 41 evenly-space logarithmically from 1019 to 1023 ions/cm3

*  Photon energies:

  • 500 groups from 0.1 eV to 10 keV, with group boundaries evenly-space logarithmically.

After starting up PROPACEOS, select the Add button on the upper-right side of the Plasma Elements widget. When the periodic table pops up, select "H". Then, select the Add button again, and select "C" from the periodic table. The Plasma Elements widget should now look like the example below.

The number fractions for both H and C are 1.0. They can be left this way because the element number fractions entered are normalized to unity at the beginning of the PROPACEOS calculation.

The Atomic Processes widget is left unchanged. The default is a LTE calculation.

*  To set up the grids, either select Next from the Atomic Processes widget, or select the Grid Parameters button on the left side of the main window.

*  To enter the custom temperature grid, select the Custom Grid radio button. Then select the Table button and an empty table will appear.

*  To enter the low temperature grid points, enter values directly into the table.

*  To enter the evenly-spaced points between 2 and 60 eV, select the Add Pts to X Grid button. Then in the popup dialog, select Linear in the Set Spacing area; set 2 for the Min. Value, 60 for the Max. Value, and 30 for the Number of Grid Points. Then press Apply. This will add 30 points to the table, starting at 2 eV and ending at 60 eV.

*  To enter the evenly-spaced points between 70 and 100 eV, follow a similar procedure, adding 4 evenly-spaced points between 70 and 100 eV.

     

For the ion density grid, make sure the Simple Grid radio button is pressed. Enter 41 for the number of points, and 1.0e19 and 1.0e23 for the Min and Max values, respectively.

For the photon energy grid, make sure the Simple Grid radio button is pressed. Enter 500 for the number of groups, and 0.1 and 10000 for the Min and Max values, respectively.

It is generally a good idea to save the workspace periodically. To do this, select the File | Save menu item.

*  To start the simulation, select the Run Simulation button. After entering the run name and run directory, the calculation will start.

*  To view results for opacities, select the Opacities button on the left side of the main window.

*  The opacity plots for the first T-r point are automatically added to the graph. The temperature or density of the curves shown can be adjusted by selecting the T-r point in the list box in the left, and then adjusting the values using either the drop-down combo box or arrows in the lowerleft corner of the opacity viewer dialog.

*  To add a second set of curves (a "set" corresponds to all 3 types of multigroup opacities: Rosseland, Planck absorption, and Planck emission), select the Add button, and select from the menu the T-r point you wish to add. Doing this allows for comparisons to be made for differing T-r conditions.

 

 

相关产品